Laboratory and field evaluation of bio-larvicide Bacillus thuringiensis isolate of Nepal against Aedes aegypti

Ganga Gharty Chhetri (G.C) Lecturer Trichandra Multiple campus Central Department of Microbiology Tribhuvan University

Authors and Affiliations

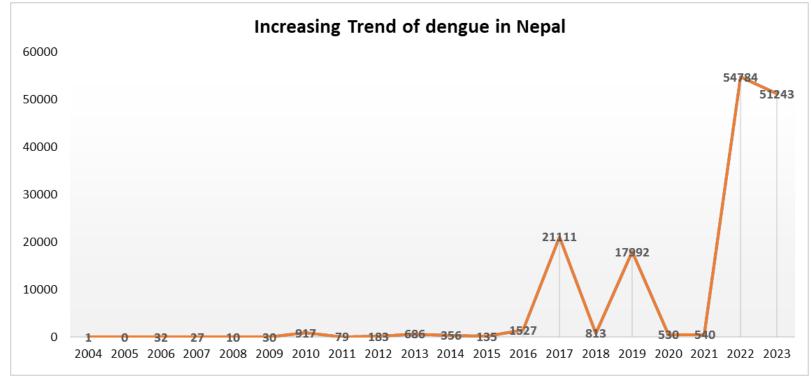
Ganga GC^{*a, b}, Megha Raj Banjara^a, Ishan Gautam^c, Prakash Ghimire^a, Komal Raj Rijal^a

 ^aCentral Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal.
^bTrichandra Multiple Campus, Ghanta Ghar, Kathmandu, Nepal.
^cNatural History Museum, Tribhuvan University, Swayambhu, Kathmandu, Nepal.

Background

- Dengue disease rate is increasing in all urban areas of Nepal.
- All 77 districts of Nepal (EDCD 2023).

Aedes aegypti


Aedes albopictus

Transmitting the dengue viruses.

In Nepal Aedes aegypti is the main vector for transmitting dengue virus (Poudel, 2023).

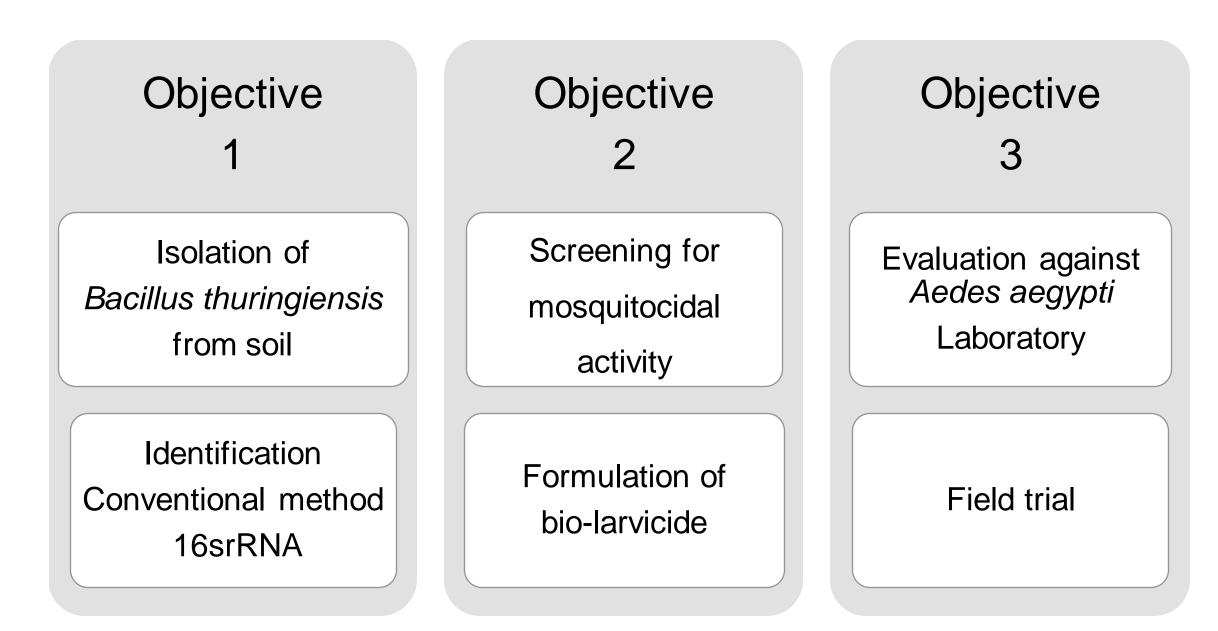
Dengue Control Measures

- Search and destroy campaign,
- ✤ Is by Environmental management and manipulation in all urban areas.
- ✤ But the disease rate is increasing in order.

(EDCD 2023 situation update)

Urgent need for new tools

✤ To decrease the burden of dengue diseases, in Nepal.


Multiple and safe tools should be implemented to control dengue vectors.

Tools like- Biological control, Sterile insect technique (SIT), Wolbachia, etc.,

should be included in the vector control program.

Rationale

- Aedes aegypti has a different behavior than the other mosquito vectors.
- It breeds indoors in domestic containers, day biter.
- Larval source management (LSM) without emptying water containers by using a biological control agent like *Bacillus thuringiensis* (Bt) is a novel work.
- A new intervention in Nepal.
- The research aims to isolate a mosquito larvicidal *Bacillus thuringiensis* (Bt), a future tool to control mosquitoes.

Isolation and Identification

Acetate Selection

Travers et al 1987

Bacillus spp

Identification Conventional

Bacillus thuringiensis Coomassie Brilliant Blue staining (Rampersad *et al* 2002)

Primary Screening

Pure culture in NA agar Plate

Bacillus thuringiensis (Bt)

Spherical crystal protein

Mortality of larvae Observed after 24 hours incubation

Larval Source/ Field

Collected Larvae

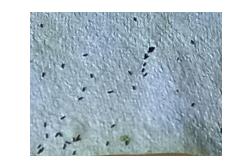
WHO (2005) Guidelines for laboratory and field testing of mosquito larvicides

5/6/2024

Quantitative bioassay Against Laboratory reared Aedes aegypti

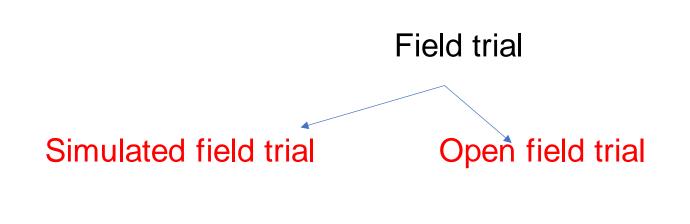
- 6 Different concentrations of Bt
- Four replicates
- 3 consecutive days

Liquid Formulated Bio larvicide Bt



WHO (2005) Guidelines for laboratory and field testing of mosquito larvicides

Rearing of Aedes aegypti


Insectary (Cage)

Eggs in a White Paper

Hatching of Eggs in an enamel tray

Hatched larvae

Simulated field trial

 Small containers (buckets) of capacity 1500ml filled with water were placed under a shaded condition by using six different concentrations of formulated Bt and adding 25 reared *Aedes aegypti* larvae once a week to observe the residual effect of the formulation.

WHO (2005) Guidelines for laboratory and field testing of mosquito larvicides

Open Field trial

- At 20 different sites.
- Containers like –tires, buckets, tubs, jars, drums, etc. placed in open field and under shaded places.
- In open spaces where rainwater gets collected in the containers naturally.
- Different concentration of bio-larvicide Bt was added to the water containers containing the larvae of mosquitoes.

Data Analysis

- The data was analyzed in Microsoft Excel and manually.
- Probit analysis, mean lethal concentration, LC_{50} and LC_{90} was determined.
- The mortality percentage was calculated by using the formula
- Mortality (%) = (x-y/x) x100
- Where x = percentage survival in the untreated control and <math>y = percentagesurvival in the treated sample (World Health Organization, 2005).
- Graphs and tables were used to present the residual effect of bio larvicide.

Table: 1 Number of native Bt obtained from soil

Soil	Site	Bt isolates
454	Geographical region of Nepal	1395

 \succ Every soil sample contains \geq 3 different types of Bt isolates.

> Soil sample is a rich source of Bt.

Preliminary screening for larvicidal activity of Bt

Table: 2 Larvicidal activity of Bt			
Larvicidal Bt	Non Larvicidal Bt	≻ 14Р2А> 3Р1В	
4	804	> 8P2A> 7P2A	
	Larvicidal Bt	Larvicidal Bt Non Larvicidal Bt	

- Not all Spherical crystal proteins or insecticidal crystal proteins (ICPs) producing Bt were larvicidal.
- Indicate the specificity of the ICPs toxin. The composition matters not the shape of ICPs

Morphology of insecticidal crystal proteins (ICPs)

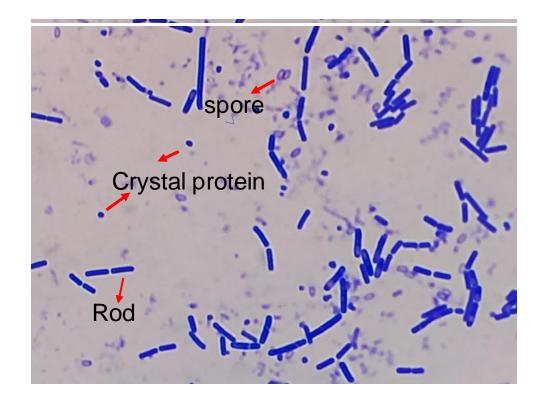
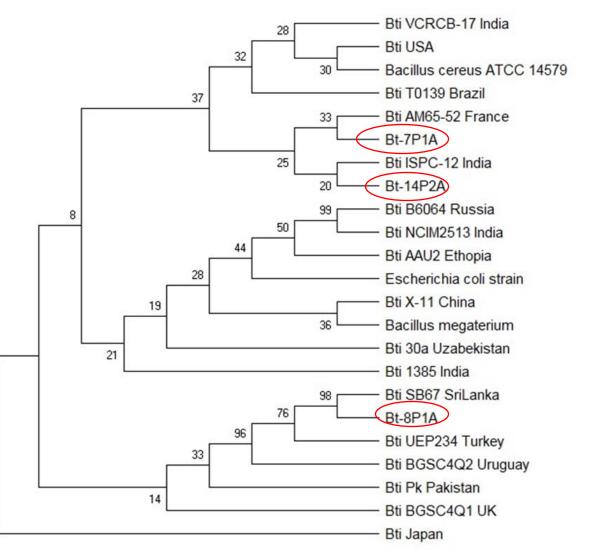



Figure 1. Light microscopic observation of Bt ICPS in Coomassie Brilliant blue stain.

16srRNA sequence

- 99% identity towards the Bacillus thuringiensis var israelensis strain AM 65-52.
- WHO-recommended strain.
- Isolates confirm as Bti

Figure 2. Neighbor-joining Phylogenetic tree based on the 16srRNA gene sequences using MEGA software.

5/6/2024

Quantitative bioassay against Aedes aegypti larvae

 >1PPM concentration of Bt was effective in causing 100% mortality of *Aedes aegypti* larvae Fig 3.

➤ LC₅₀ 6.45 PPM

➤ LC₉₀ 37.15 PPM

The potency of Bt was 16611.5 ITU/mg

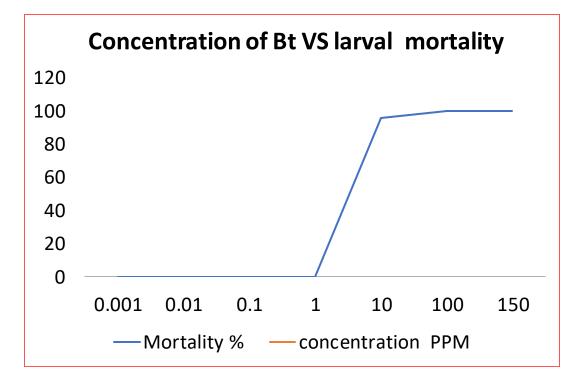


Fig: 3 concentration of Bt required to show 100% mortality.

Simulated field trial

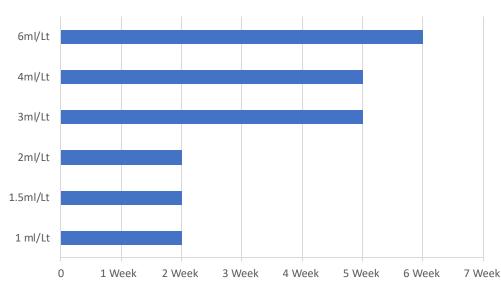


Figure 4. Simulated field trial of Bt-14P2A showing in100% mean mortality weeks

Six ml bio-larvicide showed residual activity for 6 weeks with 100% mortality of the larvae.

➢All the doses showed 100% mortality of larvae within 24 hours.

5/6/2024

Open field trial

Open field Tires 2ml/lt- residual effect for 2 weeks, 100% mortality.

Shaded areas Tires 2ml /lt – residual effect 3-4 weeks with 100 mortality.

- All types of domestic containers residual effects with 100% mortality for > 6 weeks.
- Open field 5ml/lt replenishment with rain water 2 weeks 100% mortality.

Bio-larvicidal property is not reduced by plastic or metal containers.

Conclusion and Recommendation

✤ Bacillus thuringiensis Bt-14P2A, Bt-8P2A, Bt-7P2A identified as mosquito larvicidal bacteria.

*Laboratory assay and field trial results proved that the formulated bio-larvicide

Bt-14P2A is effective in controlling mosquitoes at different breeding habitats.

These isolates as future strategies for managing larval sources and combating mosquito-borne illnesses in Nepal.

Take away message

Let's combat the dengue disease by using safe bio-larvicide Bt-14P2A Bti

in our domestic containers or other aquatic habitats for LSM to break the

transmission chain of the dengue virus.

Acknowledgments

NHRC Provincial grant

UGC, Sanothimi, Ph.D. grant, and fellowship

Associate Prof.Dr. Komal Raj Rijal

✤Prof. Dr. Prakash Ghimire

✤Associate Prof. Dr. Megha Raj Banjara

Associate Prof. Dr. Ishan Gautum

Staff of the Microbiology Department

Students, friends, Family members

Thank you

Ganga G.C Trichandra Multiple campus gangagc2@gmail.com 9841204803

Bio

 Ganga Gharty Chhetri, Microbiologist, Lecturer of Trichandra Multiple campus. Academician and researcher. Interested to work in the field of biological control agents, Biofertilizers, biopesticides, and Antimicrobial resistance.