DR. JEFFREY PRADEEP RAJ .,

MBBS., MD (Pharm.)., DM (Clinical Pharm)., PG. Dip. Biostatistics., PG. Dip. Family Medicine., AFAMS., MBA.

Associate Professor, Division of Clinical Pharmacology, Kasturba Medical College (MAHE), Manipal, India

Recipient of a total of 45 awards / honours

Research Activities:

- Publications in Medline / Scopus Indexed journals: 67
- In press: 2
- Completed Research (yet to be published): 10
- Ongoing Research: 16

<u>Funding Received:</u> India - 3.75 crores INR (approx.); Foreign - 8.16 crores INR equivalent (approx.)

Peer Reviewer:

- Journals: BMJ Open, BMC Central, PloS One, J Phys Act Health, Polish psychological bulletin
- Funding agencies: DBT India & Medical Research Council - UK

The Belmont Report (1979)

Do pandemics impact ethical principles?

Vaccine - a key prevention strategy of any contagion

People often mandated to take a vaccine for the 'greater good' of humanity

Can impact autonomy

Vaccine Hesitancy – The Silent Killer?

Pneumococcal Vaccine – part of Universal Immunisation program → children

Dec 2021 \rightarrow 169 million doses $\rightarrow \downarrow$ mortality due to Pneumococci by 60%

Elderly \rightarrow No UIP

National Technical Advisory Group on Immunization (NTAGI) → recommends for all elderly Hesitant to take a vaccine – concerns regarding safety, effectiveness, costs *etc*.

24th FERCAP Annual Conference 2024 24-27 Nov 2024

Parallel Session 3C – 3.6: Ethical Issues in Public Health Research (25 Nov 2024)

Can a Discrete Choice Experiment (DCE) help understand Pneumococcal vaccine hesitancy among elderly? A study from India

Speaker: <u>Dr. Jeffrey Pradeep Raj</u>, Associate Professor, Division of Clinical Pharmacology, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal, India

Email: jeffrey.raj@manipal.edu

Can a Discrete Choice Experiment (DCE) help understand Pneumococcal vaccine hesitancy among elderly? A study from India

<u>Jeffrey Pradeep Raj</u>, Inesh Vij, Likhith Prasanna Department of Pharmacology, KMC Manipal, India

Presentation Overview

- What is a DCE?
- Study Objectives
- Methods and Study procedures
- Results
- Discussion
- Conclusions

What is a DCE?

An experiment commonly used by companies (FMCG or white goods) for marketing purpose

A quantitative/ Statistical technique that elicits individual preferences regarding any goods or services. E.g., Whether vaccine A or Vaccine B

Preferences can be broken down into separate characteristics – called "attributes" [E.g., safety, effectiveness, etc.,] which vary across different levels (E.g., effectiveness - 50%, 70% or 90%).

SIDCER Soekhai et al. Drug Discov Today. 2019;24(7):1324–31

Helps in identifying which attribute primarily influence the decision to take one vaccine over the other

Objectives

Primary:

To identify the <u>key attributes</u> of Pneumococcal vaccine for its acceptability and their <u>willingness to pay (WTP)</u> for the same by the general elderly population of India

Secondary: To estimate the <u>burden and predictors of pneumococcal vaccine</u> <u>hesitancy</u> among the Indian elderly

Methods - overview

Ethics	IEC Reference Number: 365/2024 CTRI Reference Number: CTRI/2024/10/075561. Written informed consent was obtained digitally Conducted in accordance with ICH-GCP, and ICMR ethics guidelines 2017
Study Design	Cross sectional survey at single time point
Sample size	Total of 2000 participants. No formal sample size estimation as it is a DCE

CAP

e.

DCER

lobalizing Ethics for Health Research

S

Study Setting

The survey link has been live from 21 October 2024

Interim analysis with data until 08 Nov 2024

Pneumococcal vaccine \rightarrow not yet mandated by Gol

Administered only in high-risk individuals

Phases of the Study

I. Designing of the DCE

- Decide on the attributes and levels under each attribute
- Generate multiple vaccines pairs using various permutations and combinations of these levels
- Each of the vaccine (Vaccine A or Vaccine B) will have all the attributes mentioned but will have just one of the many levels

II. Conduct of the Survey

- Respondents assessed for eligibility to participate
- Survey containing the DCE was answered by the respondents and data analyzed

DCE Designing: Attributes and Levels for a hypothetical Pneumococcal vaccine

Attributes	Levels
Effectiveness	50% protection/ 70% protection/ 90% protection
Duration of protection	1 year/ 5 years/ 10 years/ Lifelong
Number of Injections	One/ Two
Common Side effects	No side effects/ Injection site pain, redness and swelling for 1-2
anticipated	days/ Fever or body pain for 1-2 days
Where the vaccination will be	At Home/ At Hospital or Clinic /At place of work
administered to you	
Cost per Injection	Free/ Rs.1000/ Rs. 2000/ Rs. 3000/ Rs. 4000 (1USD = 86 INR)
	A ^P

DCE Designing: An example DCE question

Attributes	Vaccine A	Vaccine B		
Effectiveness	50% protection	70% protection		
Duration of Protection	Lifelong	10 years		
Number of Injections	2	1		
Common side effects		Injection site pain redness and		
anticipated	No common side effects	swelling for 1-2 days		
Vaccine administration	At Home	At place of work		
Cost Per Injection	Rs.3000	Free		

Which among the above vaccines would you prefer?

- Vaccine A
- Vaccine B
- Neither vaccine/No vaccine

DCE Designing: The final construct

Using permutations & combinations of levels, no. of unique vaccine pairs (choice sets) obtainable = 582,660

Of which 24 pair wise choice sets were constructed using a Doptimality algorithm using STATA software V 16.0

All choice sets checked for logical plausibility and no manual alterations were done

24 choice sets were randomly assigned to four blocks, each of which had 6 choice sets; Each participant received one block randomly

Validity of the DCE

I. Internal validity

- Trap Question
- Hypothetical vaccine pair with one of the vaccine pair unambiguously better than the other pair
- It was fixed for all participant and was the 6th DCE question

II. External Validity

- Opt-out option of neither vaccine
- Respondents not forced to fit their responses as per the given DCE → Generalizability issues

DCE Designing: The Trap Question

Attributes	Vaccine A		Vaccine B
Effectiveness	50% protection		90% protection
Duration of Protection	1 year		Lifelong
Number of Injections	2		1
Common side effects			
anticipated	Fever, body pain for 1-2 day	5	No common side effects
Vaccine administration	At Home		At Home
Cost Per Injection	Rs.4000	Free	
Which among the above vaccines wo			
 Vaccine A 			

- Vaccine B
- Neither vaccine/No vaccine

Conduct of Survey: Inclusion Criteria

All consenting elderly of any sex, age 60 years and above

A citizen of India who has NOT been residing >3months outside India in the past 6 months (self-reported).

Survey forms that are filled 100 percent

Conduct of Survey: Exclusion Criteria

Non-resident Indians (NRIs) and overseas citizen of India (OCIs) [despite having a Passport or dual citizenship]

Those who do not answer the trap question correctly

Incompletely filled survey forms [anything less than 100 percent]

Conduct of Survey: Study Procedures

Online link
 circulated in
 various digital
 platforms

Hybrid Mode – Self administered / volunteer administered N On clicking the link → access to PIS & ICD document in 6 language choices

> After consent, access to survey

 \mathbf{m} Survey had 3 sections (a) Sociodemographic (b) past medical, flu and COVID-19 related history (c) DCE with 6 hypothetical vaccine pairs + 1 trap question

Conduct of Survey: Statistical Analysis Plan

Sociodemographic characteristics summarized using descriptive statistics Mixed logit regression (MXL) - to identify the key attributes of COVID-19 vaccine for acceptability

Burden of Predictors vaccine univariate hesitancy and expressed as multivariate proportion of binary logistic participants regression choosing the opt-out option

Statistical significance P < 0.05

Results: Study Flow Diagram

Results	Demographic characteristics (1/2)	N=843	Number	Percentage
Age (Mean ± SD)			67.85	5 ± 7.28
■ Sex				
Male			427	50.5
Female			414	49.1
 Others 			2	0.23
 Marital status 			28	3.32
 Unmarried 			54	6.40
Separated			54	6.40
Widow/ Widower			126	14.94
Married and living with	spouse		586	69.51
 Locality of living 				
City			483	57.29
Town			173	20.52
 Village or Hamlet 			187	22.18
Education				
 Illiterate 			85	10.08
Primary School (Up to classical)	ass 5th Pass)		75	8.89
 Middle School (Class 6th 	, 7th & 8th Pass)		57	6.76
High School (Class 9th &	10th Pass)		66	7.82
Higher Secondary (PUC of the secondary)	or Class11th & 12th Pass)		90	10.67
Diploma / Certificate cou	urse		40	4.74
 Degree (UG / PG) 			239	28.35
Professional Degree, Lav	vyer, Chartered accountant, Engineer, PhD degree hold	er)	191	22.65

12/9/2024

Results Der	nographic characteristics (2/2)	N=843	
Health care worker			
• Yes		711	84.34
NO		132	15.65
If health care worker, role (n=1296)			
 Doctor 		96	11.38
 Nurse 		12	1.42
 Office /any other role that does NOT invision samples/ contact of potentially infective 	8	0.94	
Pharmacist	5	0.59	
Ward boy/ sanitary worker/ Ward Clerk	5	0.59	
 Other role involving patient interaction/ infective articles like clothes, bed sheet, 	6	0.70	
 Monthly total income of all family me 	mbers		
Lower class	41	4.86	
Lower middle class	39	4.63	
 Middle class 		110	13.05
Upper middle class		138	16.37
Upper class		515	61.09

12/9/2024

		MAIN EFFECTS MODEL			DEL	WILLINGNESS TO PAY ANALYSIS			
ATTRIB	J'ES (n = 843)	Coefficients (SE)	Odds ratio	95% CI LL	95% CI UL	P-Value	Coefficients	95% CI LL	95% CI UI
	50% protection	-		-	-	-	-	-	
Effectiveness	70% protection	0.71(0.05)	2.04	1.87	2.23	<0.001	2276.81	1858.96	2694.65
	90% protection	0.64(0.06)	1.90	1.68	2.15	<0.001	2041.55	1527.57	2555.54
	1 year	-		-	-	-	-	-	
Duration of	5 years	1.02(0.07)	2.78	2.44	3.16	<0.001	3253.99	2663.95	3844.04
protection	10 years	0.91(0.05)	2.48	2.25	2.75	<0.001	2898.20	2434.09	3362.31
	Lifelong	1.28(0.07)	3.60	3.15	4.12	<0.001	4084.25	3328.49	4840.01
Dasaga	1 dose	-	-	-	-	-	-	-	- /
Dosage	2 doses	-0.54(0.05)	0.58	0.53	0.64	<0.001	-1721.74	-2161.59	-1281.88
Side effects anticipated	No common side effects	0.07(0.06)	1.07	0.95	1.20	0.293	207.22	-170.40	584.83
	Infection site redness and swelling for 2 days	-0.003(0.1)	1.00	0.86	1.16	0.969	-9.30	-481.64	463.04
	High fever and severe body ache for 2 days	-	-	-	-	-	-	-	_
	Injection at home	-	-	-	-	-	-	-	-
Location of injection	Injection at workplace	0.002(0.06)	1.00	0.89	1.12	0.964	8.31	-355.66	372.27
	Injection at hospital	0.12(0.06)	1.13	1.00	1.28	0.047	391.64	18.06	765.22
Cost	per injection	-0.0003139	1.00	1.00	1.00	< 0.001			

28-11-2022

Results: Burden of Vaccine Hesitancy

Results: Predictors of Vaccine Hesitancy

	Multivariate Analysis				
Variables (N = 843)	aOR (95% CI)	P value			
Marital Status Separated (vs Married & Living with spouse)	26.21 (3.07, 223.81)	0.003			
Residing in Village (Vs city)	6.57 (1.36, 31.84)	0.019			
Illiterate	794.36 (1.42, 445448.10)	0.039			

Discussion (1/2)

Our DCE suggested, longer duration of protection and more effective vaccine \rightarrow most preferred. Cost least important attribute

Over usual characteristics like efficacy and safety, duration of protection stood out \rightarrow long-lasting immunity as a way to enhance overall quality of life

Higher value, potentially reducing the need for repeat vaccinations \rightarrow financial & logistical impact

.. McPhedran *et al*. Econ Lett. 2021;200:109747

2. Dong *et al*. Heal Expect. 2020;23(6):1543–78

3. Kreps et al. JAMA Netw open. 2020;3(10):e2025594.

Discussion (2/2)

Cost of the vaccine was a significant but least important attribute \rightarrow Similar to the report by Dong *et al*. from China

Burden of vaccine hesitancy (chose opt-out option for $\geq 3 / 6$ pairs) = 6.88% \rightarrow approximately \downarrow by half than a decade ago during H1N1 pandemic (2009)

Significant proportion still is hesitant \rightarrow Balance respecting personal autonomy with promoting public health

29

Strengths

Large Sample size (Final analyzed n = 843)

Representative of entire nation (28 states and 8 union territories)

India is a nation of diverse cultures/ traditions and geographical topography \rightarrow generalizable to other LMICs

Limitations

Non-probability sampling \rightarrow potential sampling bias; mitigated by a large sample size

Although vaccine pairs were hypothetical \rightarrow respondents could have linked one or more of the given attributes to the existing commercially available vaccines \rightarrow ?Decision influenced based on other attributes not listed in this study

Conclusions

Most important attributes that influence decisions were duration of protection and effectiveness

The significant predictors of vaccine hesitancy were male sex, upper and middle socio-economic class, and presence of comorbidities such as diabetes, heart problems or asthma.

Before making it mandatory - Balance respecting personal autonomy with promoting public health

Acknowledgements

• Md. Hamza – Independent statistician

