Fasting vs. Carbohydrate Loading to Prepare for Femur Fracture Surgery

By: Narendra Kumar Chaudhary

Radiographer Officer Nepal Orthopaedic Hospital, Jorpati, Kathmandu, Nepal 2024

Presenter's information

- Name: Narendra Kumar Chaudhary
- Educational qualification: MA (Mass Communication and Journalism) and MSc (Nutrition and Dietetics)
- Designation: Radiographer officer and Head of Department in Radiology Department at Nepal Orthopaedic Hospital, Jorpati, Kathmandu since 24 years
- Others:
 - Involved in teaching/learning activities in 10+2 (Mass communication and Journalism) since 15 years, BN/BSc Nursing (Nutrition and Dietetics) since 5 years and MSc. Nutrition and Dietetics (Thesis supervisor) at CAFODAT college.
 - Involved in clinical research and published around 10 academic papers in international pubmed indexed journals.

Outlines

Introduction

- ✓ Background
- ✓ Statement of problem
- ✓Justification of study
- ✓Objectives of study
- Methodology
- Result and Discussion
- Conclusion and recommendation
- Reference

Introduction:

Background:

- Femur fracture in elder peoples cause long stay at hospital¹
- Surgical management of patients with different comorbidities facilitates challenges
- Patients are in long fasting to avoid from pulmonary aspiration
- Catabolic state worsens the stress response and contribute to insulin resistance and hyperglycemia lengthening the recovery period²
- Leads to distress, confusion, instability, headache, dehydration, electrolyte imbalance, postoperative nausea, and vomiting³

Background(Conti....)

- Concept of Enhanced Recovery After Surgery (ERAS)
- 100 g and 50 g of carbohydrates orally the night before and two hours before surgery respectively, called preoperative carbohydrate loading⁴

Advantages of ERAS:

- Decrease of insulin resistivity
- Improvement of metabolic functions
- Less post-operative protein and nitrogen loss improves muscle function and facilitates wound healing
- reduces the intraoperative core body temperature
- Decrease the length of postoperative stay at hospital
- Reduces the financial cost

Statement of problems

- ERAS as novel and scientific approach in Europe
- Mostly practiced in general surgery, obstetrics, and gynecology
- Nutritional support is less prioritorized in orthopaedics for patients' fast postoperative recovery⁵
- Prolonged fasting as traditional anaesthesia still in practice in Nepal Concern of Issue: To assess the effect of pre-operative carbohydrate loading on the improvement of
- I. postoperative pain,
- II. functional mobility, and
- III. the recovery rate among patients undergoing surgery for femur fracture management.

Methodology

- Study design: Single-center, hospital-based, open-label, parallel-group randomized controlled trial
- Study duration: August 2020 November 2021
- Study site: Nepal Orthopaedic Hospital, Jorpati, Kathmandu, Nepal (a charitable 100 bedded specialized orthopaedic and trauma hospital)

Study population:

- Inclusion criteria: The patients aged 50 years and above having a femur fracture planned for surgery, those patients who were mentally fit, and those patients who provided written informed consent were included in the study.
- Exclusion criteria: Patients with pre-existing diabetes (Type 1 or 2), past carbohydrate intolerance, pathological fracture or any suspected pathology, and surgery failure or non-union cases

sample size

Sample size

- By using a test comparing independent two means in Stata/MP version 14.1 (StataCorp LP, College Station, Texas)
- the primary outcome being the Cumulative Ambulatory Score (Mean \pm SE) of the study group versus the control group as 12.76 \pm 0.33 and 12.02 \pm 0.32 respectively
- taking a level of significance at 5% and power of 80%, the sample size was 60
- With a 10% loss to follow-up and dropout, the total sample size was 66 (33 participants in each group)

Randomization

- Participants assigned to a study and control group in 1:1 ratio
- computer-generated random number using a Microsoft excel sheet were used and coded control as 'C' and study as 'S'
- Preparation of envelopes according to a random number, and the participants 1 to 66 were allocated to either control or study group based on the random number
- After confirmation, the patients were asked to draw the envelop and opened

Intervention

Control group

Prolonged Fasting

from midnight to the next morning as in existence

Intervention group

- Carbohydrate loading according to the ERAS protocol (100 gram glucose and 50 gram glucose orally the night before and two hours before surgery respectively)
- Glucose-D (carbohydrate-rich drink of Nepali product (Reg. No.: 3506/045/046, Department of Food Technology and Quality Control, DFTQC No.: 01–33-55–03-218).
- **Composition:** *Dextrose Monohydrate (99.4%), Calcium Phosphate (0.6%) and Vitamin D (0.0001%)*

Study variables

Primary outcomes

1. Postoperative pain: Pain assessed on 1st postoperative day with Visual Analogue Score (VAS score)

2. Functional mobility:

A. Cumulative Ambulatory Score (CAS) to find out the regaining basic mobility independence on 1st, 2nd and 3rd postoperative day and added all.

B. Modified Barthel Index-Activities of Daily Living (MBI-ADL) to measure independence at the time of discharge from the hospital.

A score from 0 to 20 for "total dependency" was considered for the study; the higher the score, better the self-care activity

Secondary outcomes Serum albumin level:

Pre and post-operative serum albumin were collected and the changes were evaluated

Predictor variables

- Socio-demographic information with semi-structured questionnaire: age, sex, Body Mass Index (BMI), occupation, ethnicity, religion, residence area, and educational level
- Nutritional assessments: Mini Nutritional Assessment Scale (MNA)
- Clinical parameters: Site and side of femur fracture, types of fracture, number of fractures
- **Biochemical parameters**: Preoperative hemoglobin level and serum albumin level
- Intraoperative data: Types of surgery, types of implants used, duration of surgery, amount of blood loss, blood transfusion and adverse effect

Data management and analysis

- data entry was done using EpiData version 3.0
- Analysis based on intention to treat (ITT) approach using Stata/MP version 14.1 (StataCorp LP, College Station, Texas)
- Descriptive statistics such as frequency, percentage, and mean (standard deviation)
- Chi-square and Student's two-sample t-tests were used
- All p-values less than 0.05 were considered statistically significant

τ

Ethical consideration

- Funded by the Provincial Research Grant of Nepal Health Research Council (NHRC), Nepal (Grant number: 110/2021)
- Ethical approval from NHRC (Reg. Number: 3104, approved on 11/05/2021)
- Clinical trial registry from Clinical Trial.gov. (Identifier: NCT04838366. Registered on 09/04 2021)
- Formal permission from Nepal Orthopaedic Hospital, Kathmandu, Nepal
- Formation of *Data Safety and Monitoring Board (DSMB)*
- Written informed consent obtained from *all participants study*
- Safety pre-caution of COVID-19 followed

	Control group (n=33)	Study group (n=33)	
Variables	n (%)	n (%)	
Sex			
Female	16 (45.7)	19 (54.3)	
Male	17 (54.8)	14 (45.2)	
Age categories (years)			
50-70	15 (41.7)	21 (58.3)	
71-96	18 (60.0)	12 (40.0)	
Age in years (mean ± SD)	69.3 ± 13.9	66.4 ± 11.8	
Education			
Literate	7 (35.0)	13 (65.0)	
Illiterate	26 (56.5)	20 (43.5)	
Ethnicity			
Advantaged ethnic group	18 (58.1)	13 (41.9)	
Disadvantaged ethnic group	15 (42.8)	20 (57.1)	
Religion			
Hindu	27 (57.5)	20 (42.5)	
Non Hindu	6 (31.6)	13 (68.4)	
Occupation			
Employed	4 (57.1)	3 (42.9)	
Unemployed	29 (49.1)	30 (50.9)	
Ecological region			
Hill	12 (54.5) 10 (45.5)		
Mountain	12 (40.0) 18 (60.0)		
Terai	9 (64.3) 5 (35.7)		
Place of residence			
Rural	17 (42.5)	23 (57.5)	
Urban	16 (61.5)	10 (38.4)	

Table 1. Socio-demographic characteristics of participants

Results

Table 2. Clinical parameters of participants

Variables	Control group	Study group		
	n (%)	n (%)		
Fracture site				
Distal femur	4 (50.0)	4 (50.0)		
Proximal femur	20 (47.6)	22 (52.4)		
Shaft of femur	9 (56.3)	7 (43.7)		
Fracture side				
Left	15 (42.8)	20 (57.2)		
Right	18 (58.1)	13 (41.9)		
Number of fractures				
Two or more	4 (57.1)	3 (42.9)		
Single	29 (49.2)	30 (50.8)		
Type of surgery done				
Open reduction	30 (51.7)	28 (48.3)		
Closed reduction	3 (37.5)	5 (62.5)		
Type of implants used				
Nailing	9 (50.0)	9 (50.0)		
Others	1 (100)	0		
Plating	23 (48.9)	24 (51.1)		
Surgery duration				
Less than one hour	4 (80.0)	1 (20.0)		
More than one hour	29 (47.5)	32 (52.5)		
Blood loss				
Less than 500 ml	26 (45.6)	31 (54.4)		
More than 500 ml	7 (77.8)	2 (22.2)		
Blood transfusion				
No	26 (46.4)	30 (53.6)		
Yes	7 (70.0)	3 (30.0)		
Adverse effect				
Νο	33 (51.6)	31 (48.4)		
Yes	0	2 (100)		
Nutritional status				
Malnutrition	7 (53.8)	6 (46.2)		
Risk of malnutrition	22 (46.8)	25 (53.2)		
Normal	4 (66.7)	66.7) 2 (33.3)		

Variables	Control group	Study group	
	Mean <u>+</u> SD	Mean <u>+</u> SD	
Pre-operative hemoglobin level	11.2 <u>+</u> 1.1	11.0 <u>+</u> 1.2	
(gm/dL)			
Post-operative hemoglobin	9.9 <u>+</u> 1.2	9.9 <u>+</u> 0.9	
level (gm/dL)			
Pre-operative albumin level	<i>3.3 <u>+</u> 0.4</i>	3.4 <u>+</u> 0.3	
(gm/dL)			
Post-operative albumin level	<i>3.1 <u>+</u> 0.4</i>	3.4 <u>+</u> 0.5	
(gm/dL)			
Pre-nutritional status	20.6 <u>+</u> 2.9	20.3 <u>+</u> 2.5	

Table 3.Biochemical parameters and pre-nutritional status between the control group and study group

Variables	Control group		Study group		P value ²
	Mean <u>+</u> SD	95% CI	Mean <u>+</u> SD	95% CI	
VAS pain score	6.1 <u>+</u> 2.1	5.3-6.8	4.8 <u>+</u> 1.8	4.7-5.4	0.010
CAS score	6.8 <u>+</u> 2.8	5.8-7.8	8.1 <u>+</u> 2.8	7.1-9.1	0.033
Length of hospital stay	8.8 <u>+</u> 4.5	7.2-10.4	6.7 <u>+</u> 2.4	5.8-7.6	0.024
Modified Barthel Index	11.8 <u>+</u> 3.1	10.6-12.9	13.1 <u>+</u> 2.3	12.2-13.9	0.027
(MBI)					

²Student's two-sample t-test

Table 4. Primary outcomes between the control group and study group

Discussion

Adverse effects

- Pre-operative carbohydrate loading has no adverse effects^{6,7}
- Two participants experienced hypoglycemia during surgery
- The alterations in blood glucose might be multifactorial and other modifiers may be concerned with its homeostasis⁸

Pain reduction

- Pre-operative carbohydrate loading significantly reduced postoperative pain^{9,10}
- Preoperative carbohydrate loading reduces C-Reactive Protein (CRP)¹¹ and neutrophil lymphocyte ratio (NLR)¹²
- inflammation is the underlying origin of all pain¹³
- Also, dietary intake enhance nervous, immune, and endocrine system which has an impact on pain experience¹⁴

Functional mobility

- Cumulative ambulatory scores on the 1st, 2nd, and 3rd postoperative days were higher in study group
- Improvement of carbohydrate uptake, utilization, storage, and protein metabolism with a 50% reduction in loss of lean body mass¹⁵
- Also helps to store glycogen in the muscle and prevent the loss of lower limb mass¹⁶
- Modified Barthel Index-Activities of Daily Living (MBI-ADL) index score, degree of independence was higher at the time of discharge¹⁷

Secondary outcomes

- Preoperative carbohydrate decreased serum albumin in the body
- Preoperative fasting induces perioperative insulin resistivity which inhibits the synthesis of serum albumin¹⁸
- Low serum albumin leads to a poor prognosis delaying in the clinical outcome
- It decreased in hospital stay from 0.4 to 0.2 days

Limitations of study

• No evaluation of insulin resistivity and other hematological parameters

• No assessment of the patient's medical co-morbidities based on the American Society of Anesthesiologists (ASA)

• Limited sample size

• Interruption of data collection with the first wave of COVID-19 pandemic in Nepal

Conclusion and Recommendation

Conclusion

Accelerated recovery rate;

- postoperative pain reduction
- ambulatory function enhancement and
- Shortening hospital stay

Recommendation:

- Larger trials with a higher sample size needs for stronger evidence
- Beverages as preoperative drinks containing carbohydrates, fat, protein, and other micronutrients to acquire additional better postoperative outcomes can be further studied

Acknowledgements

• Funding provided by the NHRC under provincial research grant (Grant number: 110/2021)

• Nepal Orthopaedic Hospital, Kathmandu, Nepal

Participants who voluntarily participated in study

Reference

- 1. Breedveld-Peters JJL, Reijven PLM, Wyers CE, van Helden S, Arts JJC, Meesters B, et al. Integrated nutritional intervention in the elderly after hip fracture. A process evaluation Clin Nutr. 2012;31:199–205.
- 2. Kaye A, Urman R, Cornett E, Hart B, Chami A, Gayle J, et al. Enhanced recovery pathways in orthopedic surgery. J Anaesthesiol Clin Pharmacol. 2019;35:35–9.
- 3. Abebe WA, Rukewe A, Bekele NA, Stoffel M, Dichabeng MN, Shifa JZ. Preoperative fasting times in elective surgical patients at a referral hospital in Botswana. Pan Afr Med J. 2016;16;23:102.
- 4. Melnyk M, Casey RG, Black P, Koupparis AJ. Enhanced recovery after surgery (eras) protocols: Time to change practice? J Can Urol Assoc. 2011;5:342–8.
- 5. Briguglio M, Gianola S, Aguirre MFI, Sirtori P, Perazzo P, Pennestri F, et al. Nutritional support for enhanced recovery programs in orthopedics: Future perspectives for implementing clinical practice. Nutr Clin Metab. 2019;33:190–8.
- 6. Lende TH, Austdal M, Varhaugvik AE, Skaland I, Gudlaugsson E, Kvaløy JT, et al. Preoperative carbohydrate loading and intraoperative goal-directed fluid therapy for elderly patients undergoing open gastrointestinal surgery: a prospective randomized controlled trial. BMC Cancer. 2019;19.
- 7. Liu X, Zhang P, Liu MX, Ma JL, Wei XC, Fan D. Preoperative carbohydrate loading and intraoperative goal-directed fluid therapy for elderly patients undergoing open gastrointestinal surgery: a prospective randomized controlled trial. BMC Anesthesiol. 2021;21.
- 8. Sebranek JJ, Lugli AK, Coursin DB. Glycaemic control in the perioperative period. Br J Anaesth. 2013;111 SUPPL.1.
- 9. Chada RR, Maryada VR, Mulpur P, Reddy A, Maska A. Does Preoperative Carbohydrate Loading Help Outcomes in Total Knee Replacement Surgery? J Nutr Med Diet Care. 2019;5:36.
- 10. Pachella LA, Mehran RJ, Curtin K, Schneider SM. Preoperative Carbohydrate Loading in Patients Undergoing Thoracic Surgery: A Quality-Improvement Project. J Perianesthesia Nurs. 2019;34:1250– 6.
- 11. Aronson D, Bartha P, Zinder O, Kerner A, Shitman E, Markiewicz W, et al. Association between fasting glucose and C-reactive protein in middle-aged subjects. Diabet Med. 2004;21:39–44.
- 12. Eto S, Kawahara H, Matsumoto T, Hirabayashi T, Omura N, Yanaga K: Preoperative neutrophil–lymphocyte ratio is a predictor of bowel obstruction due to colorectal cancer growth. Anticancer Res **39**(6): 3185-3189, 2019. PMID: 31177165. DOI: 10.21873/anticanres.13456
- 13. Omoigui S. The biochemical origin of pain: the origin of all pain is inflammation and the inflammatory response. Part 2 of 3 inflammatory profile of pain syndromes. Med Hypotheses. 2007;69:1169–78.
- 14. International Association for the Study of Pain (IASP). Nutrition and Chronic Pain. Int Assoc Study Pain. 2020;1–5.
- 15. Kratzing C. Pre-operative nutrition and carbohydrate loading. Proc Nutr Soc. 2011;70:311–5.
- 16. Hamamoto H, Yamamoto M, Masubuchi S, Ishii M, Osumi W, Tanaka K, et al. The impact of preoperative carbohydrate loading on intraoperative body temperature: a randomized controlled clinical trial. Surg Endosc. 2018;32:4393–401.
- 17. Ping H, Ling X, Xue Y, Dong F. Effect of ERAS Combined with Comfortable Nursing on Quality of Life and Complications in Femoral Neck Fractures of the Aged People. Evidence-based Complement Altern Med. 2021;3;2021:8753076.
- 18. Rizvanović N, Nesek Adam V, Čaušević S, Dervišević S, Delibegović S. A randomised controlled study of preoperative oral carbohydrate loading versus fasting in patients undergoing colorectal surgery. Int J Colorectal Dis. 2019;34:1551–61.

Thank you for your kind attention