

Advancing the Fight Against Dengue: The Development of an Effective Vaccine

10-12 April 2024

11th National Summit of Health and Population Scientists in Nepal

Dr Basu Dev Pandey

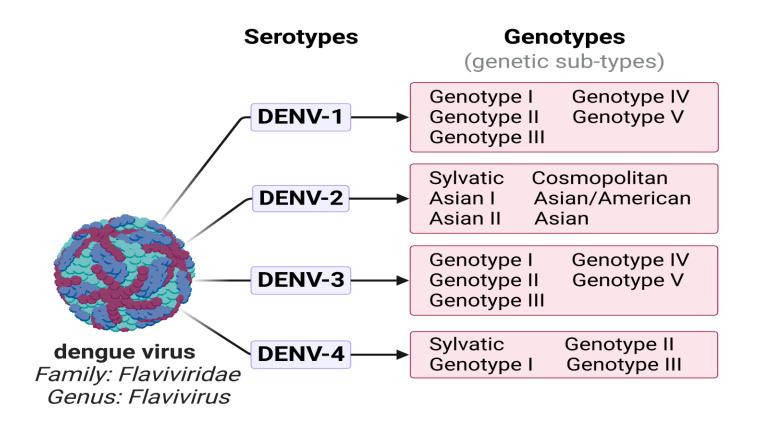
Professor

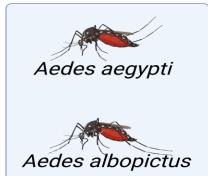
DEJIMA Infectious Disease Research Alliance (DIDA)

Vaccine Research and Development Center

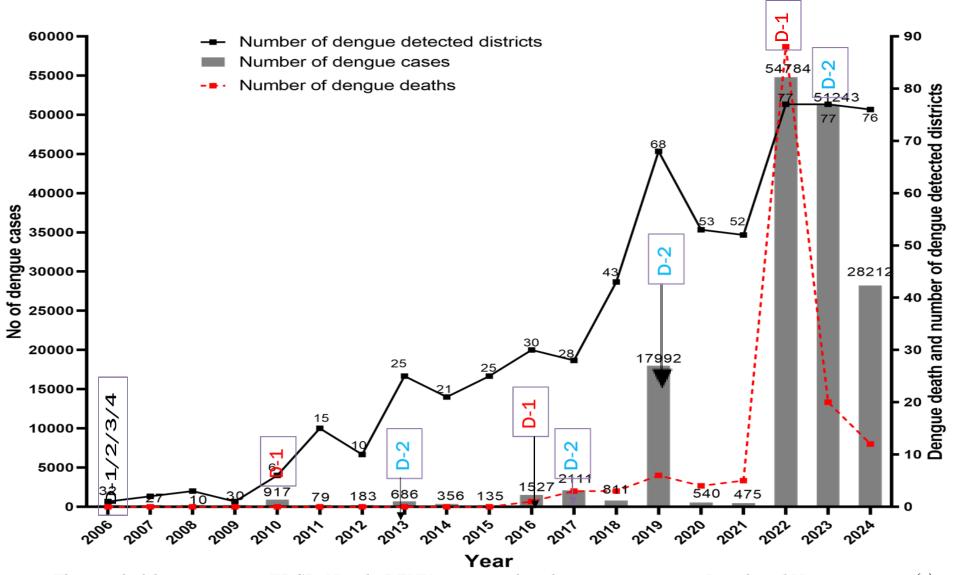
Nagasaki University, Japan

Former Director Epidemiology and Disease Control Division DoHS, Ministry of Health and Population, Nepal



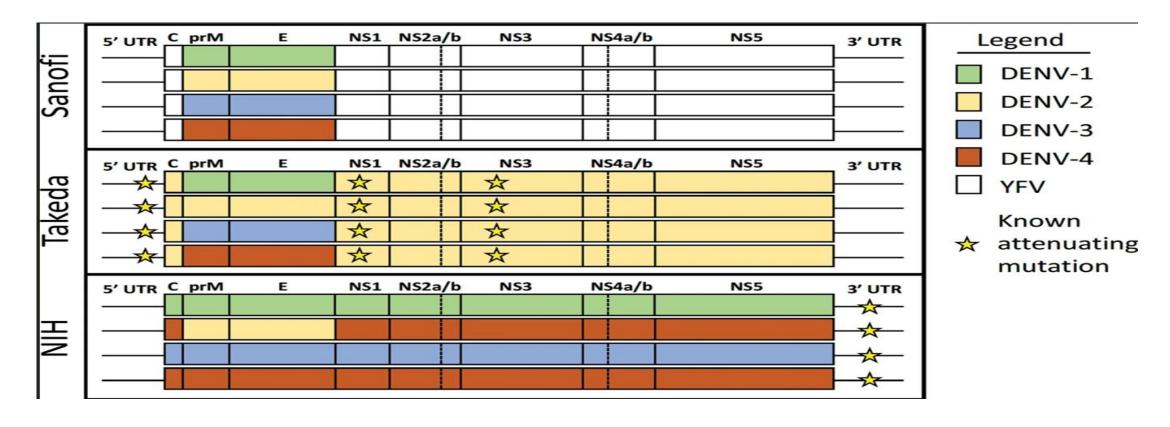

Overview of Dengue

- Dengue fever is the most prevalent mosquito-borne viral disease in the world.
- There is no specific treatment for dengue or severe dengue
- 80% or more dengue cases are asymptomatic
- Dengue is continuing to expand due to the climatic conditions and the movement of people and goods
- Innovative control activities and an effective vaccine are essential to achieve zero dengue deaths by 2030


Prevalent Dengue Sero and Geno-types

Vector Organism (carrier of DENV)

Prevalence of Dengue 2004-2024 in Nepal



The trend of dengue cases in EDCD, Nepal, DENV serotypes distribution 2004 to 2023. Rimal et al Viruses 2024, 16(4), 594

Challenges in Dengue Vaccine Development

- Existence of four DENV serotypes, each capable of causing infection, disease, and death
- The need for a tetravalent formulation that induces simultaneous and balanced protection against all serotypes
- No animal models have been validated for immune response and disease experience.
- Immunologic assays are unable to define DENV type-specific (homo typic) immune responses precisely
- Requirement for large efficacy trials to demonstrate benefit across diverse populations and clinical endpoints

Dengue Virus Genome Component in Sanofi, Takeda and NIH

- full genome DENV-1, DENV-3 and DENV-4 components with a DENV-2/-4 chimera based on a DENV-4 backbone
- possesses NS proteins from DENV-1, DENV-3 and DENV-4

Vaccine Research and Development Center (In DIDA, October 1, 2022)

Director

MORITA Kouichi

Director, DIDA, Nagasaki University

KIYAMA Ryuichi

Vice-Director

General Manager, Corporate Strategy Division and Corporate Planning Department, Shionogi & Co.

Vice-Director

YAMAMOTO Hiroshi

Director, Clinical Research Center, Nagasaki University Hospital

Goal

Responding to Highly Pathogenic Viruses and Tropical Pathogens

Development of vaccines for Ebola, dengue fever, and COVID-19 etc.

02

Establishment of an all-Japan system for vaccine development

Biosafety level-4 (BSL-4) facility and overseas fields

03

Innovative vaccine development through the use of artificial intelligence

Comprehensive epitope identification by AI for Vaccines.

Collaboration with SHIONOGI NEC NEC Oncolmmunity AS

- (1) Vaccine development for target infectious diseases and establishment of an mRNA vaccine platform
- Goal: Develop vaccines against highly pathogenic and tropical infectious diseases
 - Preparation of prototype vaccine to be completed in 5 weeks for nonclinical trial during a pandemic

Highly Pathogenic Virus Vaccine Development Team

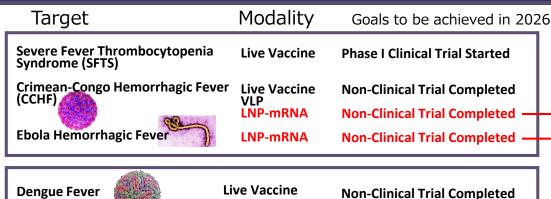
Prof. Jiro Yasuda

KM Biologics Co., Ltd.

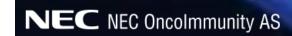
Tropical Virus Vaccine Development Team

Prof. Kouichi Morita

Vaccine Modality R&D Team



Prof. Yoshimasa Tanaka


Parasitic Vaccine Development Team

Prof. Osamu Kaneko

Nanoball-mRNA

COVID-19

Recombinant Protein LNP-mRNA Nanoball-mRNA

Non-Clinical Trial Completed Non-Clinical Trial Completed Non-Clinical Trial Completed

Non-Clinical Trial Completed

<u>Prototype</u>

vaccin

Malaria LNP-mRNA **Non-Clinical Trial Completed** Phase II Clinical Trial Completed **Live Vaccine** Leishmaniasis

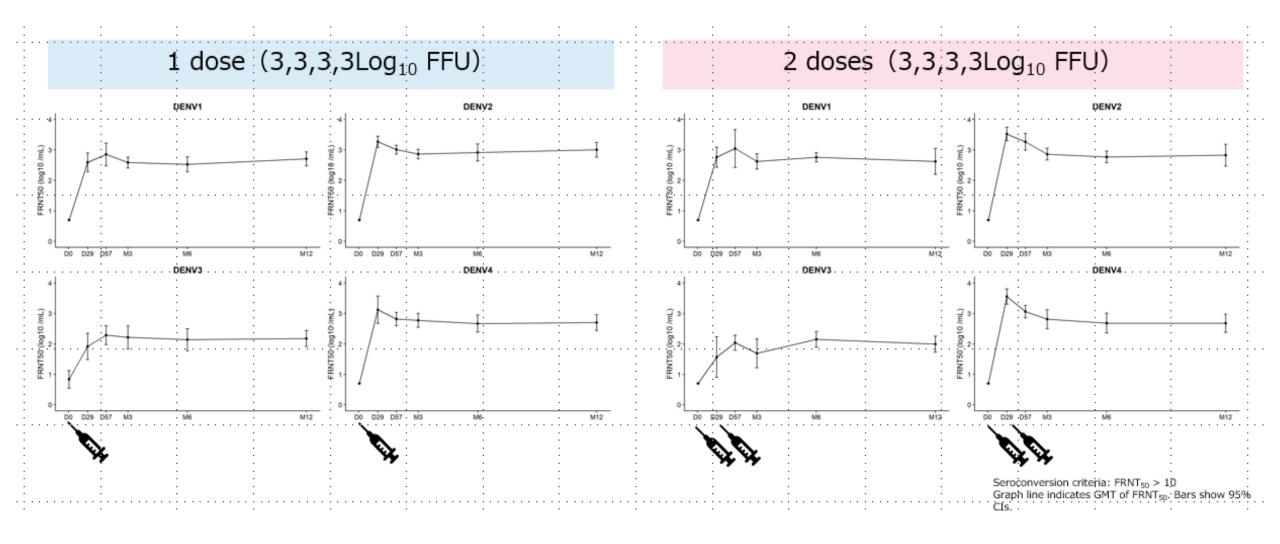
Situation of Current Vaccine Development

Vaccnes	Phase 2 (Ph2)	Phase 3 (Ph3)	New	Drug Appl (NDA)	ication	Commercially Available
Sanofi > 3 shots vaccine > DENV1~4: Chimera	Recommended only for people a who had been infected with DEN		DEN1	DEN2	DEN3	DEN4
Takeda	Under NDA of EU. In particular, to DENV3 and 4 is not enough. [2]	he efficacy of	<u>(f)</u>	<u>(f)</u>	· ·	
Butantan/NIH	Under Ph3. Tetravalent seroposi not enough. [3]	tive ratio is			0	
<pre>KMB (KD-382) > 1 shot vaccine > DENV1~4: Full Component</pre>	Only KD-382 is component.	ompletely full			Ø	

Vaccines		Doses	Sero Conversion Rate					
			DENV1	DENV2	DENV3	DENV4		
Dengvaxia	Sanofi	1	12.1%	66.7%	27.3%	63.6%		
TAK-003,QDENGA	Takeda	2	100%	100%	81.8%	45.5%		
TV003	NIH	1	80.0%	100%	64.0%	80.0%		
TV005	NIH	1	54.8%	100%	38.7%	51.6%		
KD-382	KMB	1	100%	100%	100%	100%		

Development in the stage after Ph2

There is no mRNA vaccine in the stage after Ph2


[1] N Engl J Med. 2018

[2] Clin Infect Dis. 2021

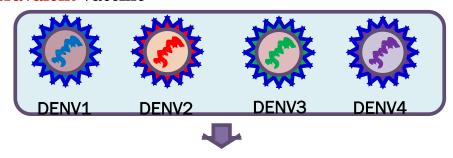
[3] HUMAN VACCINES & IMMUNOTHERAPEUTICS 2022

JID 2010;201(3):370-7 JID 2015 212(7):1032-41

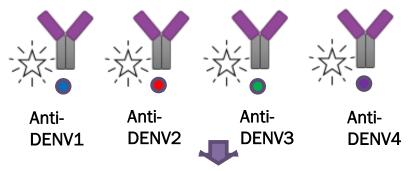
Effectiveness data of Ph1 on KD-382

Safety data of Ph1 on KD-382

✓KD-382 is well tolerated by flavivirus antibody-naïve healthy subjects.

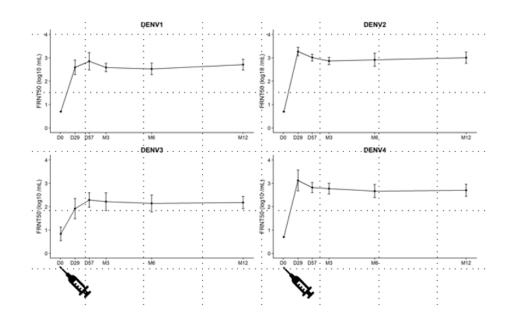

✓ No serious treatment-emergent adverse events (TEAE) related to the study drug were observed. No TEAE leading to hospitalization and death was observed in this study.

✓ Reported solicited local/systemic TEAEs were all mild or moderate intensity.


✓ No clinically meaningful changes were observed in biochemistry, hematology or vital signs. No report on severe adverse events (SAEs) related to abnormal physical examination findings.

Key Messages on KD-382

1 Non-genetically-modified (Full Component), live-attenuated tetravalent vaccine



② Long-lasting elevation of neutralizing antibody (NTAb) to all four serotypes (Well Balanced NTAb)

3 Low risk of ADE

- 4 Confirmed tolerability in human with favorable safety profile
- 5 Appropriate responses with single vaccination

Conclusion

- Dengue is expected to spread globally, with Nepal at risk of major outbreaks and severe cases.
- Urgent action is needed in mosquito control, case management preparedness, and effective vaccines
- Nepal has an opportunity to collaborate on vaccine development for zero dengue-related deaths by 2030

Thank you very much for your attention

Contact email: drbasupandey@gmail.com

basudevpandey@nagasakiu.ac.jp