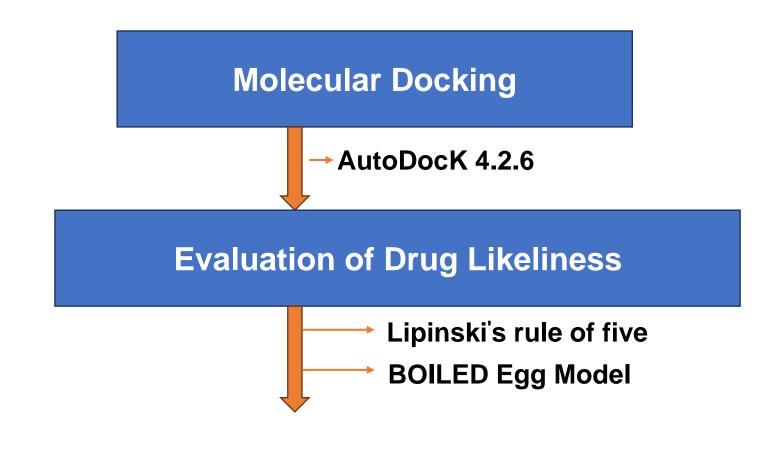
Title of Research

Molecular Docking and Pharmacokinetic Studies of Punica granatum peel Phytocompounds to explore potential Antibacterial Activity

Author's Name and Affiliation

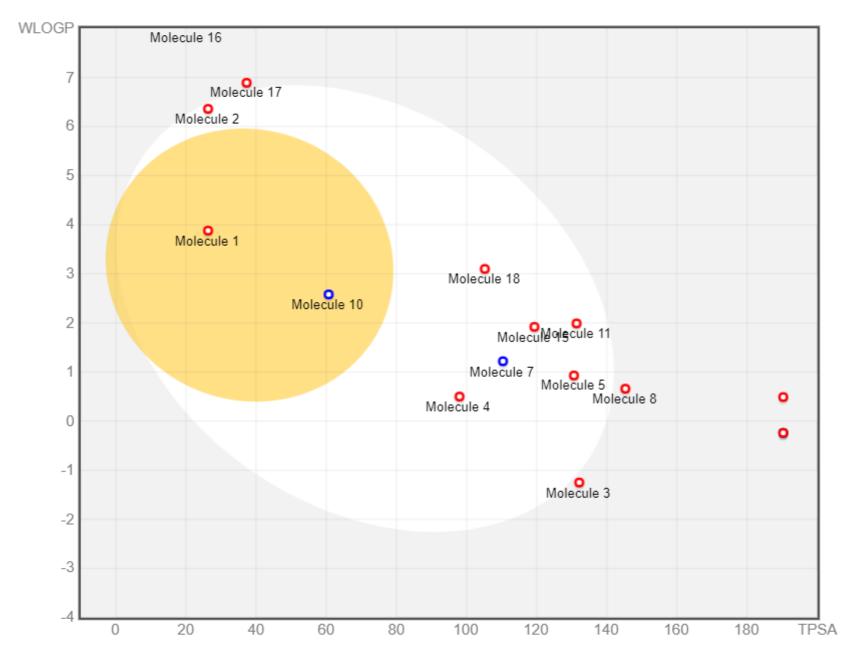

Amrullah Shidiki^{1*}. Ashish Vyas². Bijayraj Pandit³

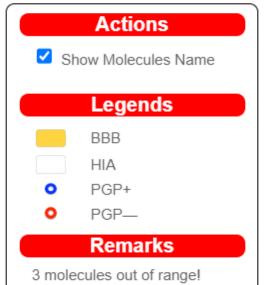
- 1 National Medical College and Teaching Hospital, Birgunj, Nepal
- 2 Lovely Professional University, Phagwara, Punjab, India
- 3 The University of the West Indies, Trinidad and Tobago, West Indies

Background and Objective

- The continuous emergence of novel antibiotic resistance strains of bacteria make serious problem regarding management and treatment of infected individuals worldwide.
- ➤ One study estimated about 700,000 people yearly were death and this will be increased to touch 10 million in the next three decades
- > The plant *Punica granatum* is more well-known because it contain diverse array of phytocompounds demonstrates their therapeutic properties
- ➤ The objective is to analyze ADME characterization and docking of bioactive compounds of studied plant with two target proteins viz. D-alanine-D ligase from gram positive bacteria and DNA gyrase from gram-negative bacteria

Methodology In Silico Analysis **Selection of Target Proteins** D Ala-D Ala Ligase(PDB ID: 3N8D) **DNA Gyrase (PDB ID: 4Z2D) Selection of Ligands from studied plant** 17 phytocompounds selected **Prediction of Active Site on studied Target Proteins CASTp**


Results


Docking Scores

		Binding affinity (Kcal/mol)	Binding affinity (Kcal/mol)	
S. No.	Ligands (Molecules)	3N8D	4Z2D	
1.	Limonen -"6-ol", pivalate	-6	-5.5	
2.	9-12-octadecadienoic acid, ethyl ester	-5.6	-5.1	
3.	Citric acid	-5.8	-5.4	
4.	Gallic acid	-5.9	-5.5	
5.	Gallocatechin	-7.8	-7.4	
6.	Granatin A	-9.9	-9.5	
7.	Catechin	-8.7	-7.3	
8.	Brevifolin carboxylic acid	-8.3	-7.1	
9.	Dihydromyricetin 3-O-rhamnoside	-7.6	-7.7	
10.	Estriol	-7.8	-7.3	
11.	Quercetin	-8.5	-7.5	
12.	Cynaroside	-8.2	-8.2	
13.	Astragalin	-7.5	-8	
14.	Quercitrin	-9.1	-7.7	
15.	3,3'-Di-O-methylellagic acid	-8.1	-7.7	
16.	Gamma sitosterol	-2.1	-1.6	
17.	Gadoleic acid	-5	-3.6	
18.	Tributyl acetyl citrate	-5	-5.6	
19.	Vancomycin	8.7	-	
20.	Levofloxacin	-	-7.6	

Lipinski properties of plant compounds analyzed by molinspiration

S. No.	Compound (Molecules)	Mol. Wt.	Log p	H-bond Donor	H-bond	TPSA
		(<500Da)	(<5)	(<5)	acceptor (<10)	<140
1	Limonen -"6-ol" ,pivalate	236	3.39	0	2	26.30
2	9-12 octadecadienoic acid,ethyl ester	308	5.03	0	2	26.30
3	Citric acid	192	-1.49	4	7	132.13
4	Gallic acid	170	0.21	4	5	97.99
5	Gallocatechin	306	0.98	6	7	130.61
6	Granatin A	800	0.56	12	23	383.49
7	Catechin	290	1.47	5	6	110.38
8	Brevifolin carboxylic acid	292	0.11	4	8	145.27
9	Dihydromyricetin 3-O-rhamnoside	466	1.30	8	12	206.60
10	Estriol	288	2.23	3	3	60.69
11	Quercetin	302	1.63	5	7	131.36
12	Cynaroside (Luteolin 7-O-glycoside)	448	1.83	7	12	190.28
13	Astragalin (Kaempferol 3-O-glucoside)	448	0.53	7	11	190.28
14	Quercetin 3-O-rhamnoside	448	1.27	7	11	190.28
15	3,3'-Di-O-methylellagic acid	330	1.90	2	8	119.34
16	Gamma sitosterol	414	4.79	1	1	20.23
17	Gadoleic acid	310	4.45	1	2	37.30
18	Tributyl acetylcitrate	402	4.58	0	8	105.20

Conclusion

The several antibiotics available are become fail to treatment of infectious diseases caused by antibiotic resistant strains of bacteria which leads to search of novel drug sources. The drug potentials from *Punica granatum* peel were studied by use of molecular docking to D-alanine-D alanine ligase (3N8D) from gram positive bacteria and DNA gyrase (4Z2D) from gram negative bacteria. Among compounds, granatin A, quercitrin, astragalin and cymaroside showed great binging affinity with 3N8D and 4Z2D. As a result, these molecules can be examined in more detail for in vitro research, which is a valuable tool for developing new medications for the treatment of bacterial infections.

Amrullah Shidiki, Ph.D.
Associate Professor, Department of Microbiology, National Medical College & Teaching Hospital, Birgunj, Nepal.

Connect With Amrullah on Social Media:

Gmail: amarullahsidhiqie24@gmail.com