

Policy brief on

Stopping Dengue in its Tracks:

Prevention and Control in Nepal

Policy options to mitigate Nepal's rising dengue threat in a changing climate

1. Context and Importance of the Problem

Despite longstanding efforts, dengue fever has become an escalating public-health crisis in Nepal, spreading into new districts and higher altitudes, overwhelming health services, and threatening both urban and rural communities (largely urban), thus demanding an urgent policy response. Figure 1 indicates the observation that Nepal's annual dengue cases (blue bars) surged since 2019, peaking at ~54.8K in 2022, ~51.2K in 2023, and ~41.86k in 2024.1 Since the emergence of the first Nepali case in 2004, dengue incidence has been rising steadily.² Epidemics within 2010–2019 were relatively modest (e.g. 1000 to 2000 cases) but 2019 saw the nation's first nationwide epidemic. The outbreak of 2022 and 2023 in all provinces and 77 districts reported cases, including higheraltitudinal areas previously being considered lowrisk areas.³mosquito-borne diseases, including dengue, has significantly increased in recent years. Understanding the temporal and spatial variations of these diseases is essential for effectively controlling potential outbreaks. In this study, we utilized Moderate Resolution Imaging Spectroradiometer (MODIS Major urban centers (Kathmandu Valley) and border regions together with frontier areas adjacent to India have been epicenters. Severe dengue (hospitalizations and deaths) has accompanied this surge: 2022's 54,784 cases ended in 88 deaths (0.16% CFR),⁴ 2023's 52,790 cases ended in 20 deaths (0.03% CFR), and in 2024's 41865 cases bring about 15 deaths (0.03% CFR). Such trends are driven by multiple factors. Climate change (warmer, more humid conditions) extends mosquito breeding seasons and permits Aedes mosquitoes to spread into hilly regions.⁵⁻⁹an increasing risk of malaria and dengue fever epidemics in tropical highlands and

temperate regions has been predicted in different climate change scenarios. The aim of this paper is to expand the current knowledge on the seasonal occurrence and altitudinal distribution of malaria and other disease vectors in eastern Nepal. Methods: Adult mosquitoes resting indoors and outdoors were collected using CDC light trap and aspirators with the support of flash light. Mosquito larvae were collected using locally constructed dippers. We assessed the local residents' perceptions of the distribution and occurrence of mosquitoes using key informant interview techniques. Generalized linear models were fitted to assess the effect

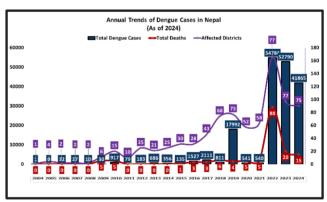


Figure 1: Annual Dengue Trends in Nepal

of season, resting site and topography on the abundance of malaria vectors. Results: The known malaria vectors in Nepal, Anopheles fluviatilis, Anopheles annularis and Anopheles maculatus complex members were recorded from 70 to 1,820 m above sea level (asl Figure 2 highlights dengue cases to months of the year 2022, 2023, and 2024 which showed that dengue rises after peak rainy season. Unplanned urbanizations, poor water/waste management, discarded tires

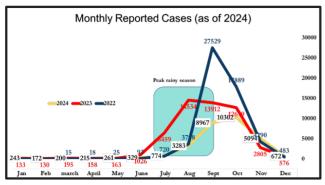


Figure 2: Monthly Dengue Cases in Nepal

and a permeable Indian border facilitate mosquito migration and virus importation.¹⁰a mosquitoborne viral infectious disease, causes a high morbidity and mortality in tropical and subtropical areas of the world. In Nepal, the first case of dengue was reported in 2004 followed by frequent outbreaks in subsequent years, with the largest being in 2019 taking the death toll of six. It is reported that the number of dengue fever cases are soaring in Nepal spreading from the plains to more hilly regions. This might have serious public health implications in the future when combined with other factors, such as: global warming, lack of early detection and treatment of dengue, lack of diagnostic facilities, poor healthcare systems and mosquito control strategies. Nepal, thus, needs a cost-effective mosquito control strategy for the prevention and control of dengue. The Wolbachiamediated biological method of the dengue control strategy is novel, economic, and environmentfriendly. It has been successfully trialed in several areas of dengue-prone countries of the world, including Australia, Malaysia, Vietnam etc. resulting in significant reductions in dengue incidence. Given the lack of effective vector control strategy and weak economic condition of the country along with the persistence of climate and environment conditions that favors the host (Aedes mosquito Nepal warms faster compared to global average, increasing probability dengue to spread to higher elevations and making dengue outbreaks more pronounced.11 Dengue's influence is broad: affecting children and workingage people, leading economic burden to families (lost work, healthcare costs) and overwhelms health facilities. Stakeholders range from local communities (rural/urban residents) to national health agencies, international partners (WHO, NGOs), as well as cross-sector interests (tourism, environment agencies). This urgent scope of the problem demands holistic and coordinated policy

intervention. Since multiple stakeholders and agencies are involved like Human, environment, vectors, communities and to better understand the epi triad (Host,Agent and environment) holistic approach which is the One Health has to be taken into consideration.

2. Methods

This policy brief has been prepared using the same literature-review approach as Lamichhane Dhimal et al.,2024 in Climate Resilient Health Systems: A Case Study of Climate Change and Dengue in Nepal¹², have reported findings of study from eastern Nepal, and carried out expert consultation by circulating drafts and supporting documents via email to relevant stakeholders and incorporating their feedbackd for finalization

3. Policy Options

We consider four broad approaches to dengue prevention and control in Nepal

Integrated Vector Management (IVM):

IVM is an established tool to mitigate mosquito density and dengue risk. 13,14 This leverages on existing infrastructure as Nepal have already introduced IRS for malaria control. Scale up traditional mosquito control (environmental cleanup, Biological larvicide, insecticide spraying) combined with targeted measures (e.g. Targeted Indoor Residual Spraying (TIRS), space spraying) along with urban planning (drainage, solid waste management). MoHP/EDCD-led campaigns (e.g. "Search and Destroy") would systematically eliminate breeding sites (standing water) in highly exposed areas. Larvicide-treated containers or TIRS could be deployed in high-risk zones that are the cluster or municipalities where the disease burden is maximum and declared as the hotspot from the municipalities. It is the complimentary approaches as mentioned by the national guiding documents (National Guidelines of Prevention, Control, and Management of Dengue in Nepal 2019).¹³ Inter-agency coordination (health, urban planning, sanitation) will be necessary. However, IVM is resource-intensive and the insecticides used hold the risk of resistance development and non-target consequences.

Biological/Technological Innovations (Wolbachia & Vaccination):

Introduce new technology: release Wolbachia-

infected Aedes mosquitoes and introduce dengue vaccination for target groups. This can be achieved by releasing Wolbachia-infected mosquitoes at hotspot urban areas (e.g. Kathmandu) for reducing dengue transmission long-term. Introduce WHOrecommended dengue vaccine; however, WHO has recommended two dengue vaccine till now not as public health campaign approaches but as the choice of country with specific situation. In dengue epidemiology Neals's position is in the fast emerging and rapid expansion paradigm. So, the vaccine still is not applicable for the country like Nepal. Still we do not have the sero prevalence ideas on dengue. 15 However, these are expensive to introduce as Wolbachia programs require specialized entomology capacity and public acceptance and regulatory approvals from several organizations. Moreover, vaccine rollout requires cold-chain, multi-dose schedule, and surveillance for coverage, raising a question for long-term efficacy and serotype coverage.

Community Engagement and Education:

Involve and empower societies with awareness and cleanup campaigns, and education for personal protection. 'Search and Destroy' campaign are only effective when it actively engages the community, as sustained vector control depends on local participation in identifying and eliminating breeding sites. This can be complemented in the month when dengue peaks usually at (Aug to Oct) and volunteer activities through enhanced

outreach such as door-to-door visits with leaflets. radio/TV announcements on dengue prevention, school-based education on mosquito control, and community clean-up activities and events. Furthermore, providing training and deploying local organizations (Tole Sudhar Samiti) or health volunteers for destroying breeding sites can also be accomplished to enhance community engagement and education. Nepal's recent activities suggest possibilities. In mid-2025, >1000 youths were trained for a "Search & Destroy" dengue activities including stakeholders of recycle and recollect association, and automobile association.¹⁶ A government's statement of a dengue awareness month (July-Aug 2025) with weekly "Clean Friday" actions shows institutional support. 17

Surveillance and Health System Strengthening:

This can be achieved through upgrading Nepal's EWARS system through enhanced reach and health workers training for early case reporting along with case management for dengue. Furthermore, enhancing laboratory networks for serotyping and vector surveillance along with integrating dengue control with other vector-borne disease program will put the resource at optimal use. This can lead towards earlier identification of outbreaks with timely interventions. However, this requires investment in training, IT Systems, and laboratories, while coordination across ministries is also necessary.

Table: 1 Policy option being assessed using criteria of cost, effectiveness, feasibility, equity, and sustainability.

	IVM	Wolbachia & Vaccines	Community Engagement	Surveillance & Health System
Effectiveness	High: short-term impact on adult mosquitoes ¹⁸	High: potential – e.g., Wolbachia cut dengue incidence by ~77% in trials ¹⁹	Medium: campaigns can reduce dengue incidence when sustained ²⁰	Medium: does not directly lower-case counts, but critical for timely response ^{21–24}
Cost	Medium: High (equipment, insecticides, manpower) ²⁵	High: upfront (developing infrastructure, purchasing vaccines ^{19,26}	Low: (primarily human resources and communication materials). ²⁷	Medium: (data systems, training, lab supplies). ^{21–24}
Feasibility	High: Nepal already has malaria/IRS programs and international support ²⁸	Medium: Regulatory and logistical challenges; requires technical partners (e.g. World Mosquito Program collaboration ¹⁹	High: leverages existing community structure ^{20,27,29}	Medium: EWARS exists but needs revision; requires inter-agency coordination ^{21–24}

Equity	Medium: urban interventions may reach more people; rural areas need tailored plans ³⁰	Medium: vaccination targets children, leaving older age groups unprotected; Wolbachia once established is population-wide ¹⁹	High: local activities reach all socio-economic groups ^{20,27,29}	Indirect: benefits entire system, but rural areas may have weaker infrastructure ^{21–24}
Sustainability	Medium: Requires ongoing funding; risk of insecticide resistance over time. ³⁰	Medium: These are long-term investments. Community acceptance (especially for novel interventions) must be managed. 19	Medium: Success depends on continual motivation and reinforcement. Complements all other strategies. 20,27,29,31	High: Improves decision-making for all interventions ^{21–24}

Overall, combining interventions is most cost-effective: e.g., an integrated approach of vector control and community action, supported by improved surveillance, maximizes impact. The innovative tools (Wolbachia/vaccine) score high on long-term impact but need initial investment and pilot phases. In terms of political acceptance and feasibility, strengthening community campaigns and IVM can start immediately with modest budgets. Surveillance improvements also offer high value by preventing outbreaks.

4. Recommendations

4.1 Short-Term Recommendations (0-2 years):

4.1.1 Research:

- Prioritize short-term research on understanding the immediate impact of climate change on dengue outbreaks, focusing on vector behavior, transmission patterns, and environmental factors. Academia and research institutes should lead in commissioning rapid studies.
- Conduct implementation research that includes the effectiveness of current vector control measures (e.g., search and destroy, larviciding) and explores immediate improvements based on local contexts.

4.1.2 Interventions:

- Strengthen the Early Warning Alert and Response System (EWARS) by integrating climatic, epidemiological and entomological data to improve outbreak predictions.
- Launch immediate community awareness campaigns in high-risk areas, utilizing mass media, local languages, and digital platforms.
- Distribute rapid diagnostic kits (NS1, IgM) in rural and urban health centers to ensure timely case detection.

4.1.3 Health System Strengthening:

- Provide short-term training for health workers, including clinicians, entomologists, and community health volunteers, on dengue diagnosis and management.
- Allocate emergency funds to municipalities for immediate dengue outbreak response, ensuring rapid mobilization of resources during peak transmission seasons.
- Establish dedicated positions for entomologists in key districts to support vector control and provide technical expertise for outbreak responses. Moreover, Nepal's malaria program has successfully used task-shifting32, demonstrating the approach is feasible; we should therefore include the animal health sector in entomological interventions.

4.2 Mid-Term Recommendations (2-5 years):

4.2.1 Research:

- Conduct mid-term studies on the long-term sustainability and efficacy of vector control programs and new technologies such as biological control methods (e.g., Wolbachia) in local conditions.
- Explore socio-economic and environmental determinants of dengue spread, focusing on vulnerable populations (e.g., urban poor, rural residents, marginalized groups).

4.2.2 Interventions:

- Allocate budget for a pilot project of innovative interventions such as introducing new dengue vaccines or for introducing Wolbachia. This can be done by collaborating with national/international experts and funding organizations.
- Define and implement mid-term vector control strategies, including GIS-based risk mapping for targeted interventions in high-incidence districts.
- Develop standardized guidelines for municipalities to create local dengue prevention action plans, ensuring consistency in efforts across regions.

4.2.3 Health System Strengthening:

- Strengthen the health system's surveillance capacity by building entomological laboratories in all districts, ensuring accurate monitoring of mosquito populations.
- Introduce refresher training programs for health professionals to address turnover issues and ensure consistent expertise in dengue management.
- Enhance the role of entomologists within the health system, ensuring that they are integrated into local government health teams to support sustained vector control and surveillance.

4.3 Long-Term Recommendations (5+ years):

4.3.1 Research:

- Conduct long-term research on the impact of climate change on the geographic distribution of dengue vectors in Nepal, helping to predict future high-risk zones.
- Initiate studies to assess the feasibility of dengue vaccination programs in Nepal, particularly in high-incidence areas.
- Conduct effectiveness of mobile or digital application for health promotion to prevent and control transmission in communities.

4.3.2 Interventions:

- Establish long-term vector control strategies based on climate-resilient infrastructure development, focusing on sustainable urban planning and waste management to reduce breeding sites.
- Implement large-scale community-based interventions, including climate-smart agriculture and environmental management practices, to mitigate vector habitat creation.

4.3.3 Health System Strengthening:

- Build a climate-resilient health system by integrating dengue management into broader climate-adaptation strategies for the health sector, ensuring long-term preparedness.
- Develop financing mechanisms to ensure sustainable funding for dengue control, including partnerships with international donors, public-private partnerships, and local government initiatives.

- Establish a national cadre of entomological professionals embedded within the health system, ensuring their long-term role in guiding and leading dengue control and vector management initiatives.
- Scale Up Integrated Vector Control: Allocate immediate funding for nationwide larval source reduction and Targeted Indoor Residual Spraying (TIRS) efforts.
- Enhance Surveillance and Health Response: Training health workers and volunteers to report weekly case data. Furthermore, build lab capacity for serotyping.

5. Conclusion

The rise of dengue in Nepal is an emerging public health issue and demand coordinated action for prevention and control. The occurrence of dengue outbreaks constantly since 2022 exposed gaps in surveillance and reliance on only traditional control measures. To protect Nepalis' health, social and economic well-being, Nepal must act now. A unified approach that increases vector control activities and encourages community mobilization, along with piloting new tools offers the best chance to avert future emergency situations. We call on policymakers, health officials, and community stakeholders to implement these recommendations immediately. By investing in prevention and preparedness today (e.g. funding the next fiscal year's mosquito control and vaccine program), Nepal can break the cycle of dengue epidemics and safeguard its people against this growing public health threat. The ultimate solution is the realization of the threat by diseases through mosquitos so rather than focusing only on Dengue there should be holistic approach to deal with diseases spread by mosquitos.

6. References/Further Reading

- 1. EDCD. Dengue-Bulletins [Internet]. EDCD. 2025. Available from: https://edcd.gov.np/resources/newsletter
- 2. Acharya BK, Cao C, Lakes T, Chen W, Naeem S. Spatiotemporal analysis of dengue fever in Nepal from 2010 to 2014. BMC Public Health [Internet]. 2016 Dec 22;16(1):849. Available from: http://bmcpublichealth.biomedcentral.com/articles/10.1186/s12889-016-3432-z
- 3. Acharya BK, Khanal L, Dhimal M. Increased thermal suitability elevates the risk of dengue transmission across the mid hills of Nepal. PLoS One [Internet]. 2025 Apr 8;20(4 April). Available from: https://www.researchsquare.com/article/rs-5418926/latest
- 4. Dhoubhadel BG, Hayashi Y, Domai FM, Bhattarai S, Ariyoshi K, Pandey BD. A major dengue epidemic in 2022 in Nepal: need of an efficient early-warning system. Front Trop Dis [Internet]. 2023 Jul 25;4. Available from: https://www.frontiersin.org/articles/10.3389/fitd.2023.1217939/full
- 5. Dhimal M, Ahrens B, Kuch U. Species composition, seasonal occurrence, habitat preference and altitudinal distribution of malaria and other disease vectors in eastern Nepal. Parasites and Vectors. 2014;7(1).
- 6. Dhimal M, Kramer IM, Phuyal P, Budhathoki SS, Hartke J, Ahrens B, et al. Climate change and its association with the expansion of vectors and vector-borne diseases in the Hindu Kush Himalayan region: A systematic synthesis of the literature. Adv Clim Chang Res [Internet]. 2021 Jun 1 [cited 2023 Aug 14];12(3):421–9. Available from: https://doi.org/10.1016/j.accre.2021.05.003
- 7. Dhimal M, Ahrens B, Kuch U. Climate change and spatiotemporal distributions of vector-borne diseases in Nepal A systematic synthesis of literature. PLoS One [Internet]. 2015 Jun 18 [cited 2023 Aug 14];10(6):e0129869. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26086887
- 8. Kramer IM, Pfenninger M, Feldmeyer B, Dhimal M, Gautam I, Shreshta P, et al. Genomic profiling of climate adaptation in Aedes aegypti along an altitudinal gradient in Nepal indicates nongradual expansion of the disease vector. Mol Ecol [Internet]. 2023 Jan 1 [cited 2025 Jun 18];32(2):350–68. Available from: http://www.ncbi.nlm.nih. gov/pubmed/36305220
- 9. Tuladhar R, Singh A, Banjara MR, Gautam I, Dhimal M, Varma A, et al. Effect of meteorological factors on the seasonal prevalence of dengue vectors in upland hilly and lowland Terai regions of Nepal. Parasites and Vectors. 2019;12(1).

- 10. Khadka S, Proshad R, Thapa A, Acharya KP, Kormoker T. Wolbachia: a possible weapon for controlling dengue in Nepal. Trop Med Health [Internet]. 2020;48:50. Available from: http://www.ncbi.nlm.nih.gov/pubmed/32581639
- 11. Khadka D, Pathak D. Climate change projection for the marsyangdi river basin, Nepal using statistical downscaling of GCM and its implications in geodisasters. Geoenvironmental Disasters [Internet]. 2016 Dec 8;3(1):15. Available from: http://geoenvironmental-disasters.springeropen.com/articles/10.1186/s40677-016-0050-0
- 12. Dhimal ML, Dahal Khatri B, Blom-Bakke KM, Sharma GN, Joshi P, Ghimire S, et al. Climate Resilient Health Systems: A Case Study of Climate Change and Dengue in Nepal [Internet]. 2025. Available from: http://medrxiv.org/lookup/doi/10.1101/2025.08.12.25333484
- 13. EDCD. National Guidelines on Prevention, Management and Control of Dengue in Nepal [Internet]. Teku, kathmandu, Nepal; 2019. Available from: https://www.who.int/
- 14. WHO. Global strategic preparedness, readiness and response plan for dengue and other Aedes-borne arboviruses [Internet]. Vol. 4, World Health Organization. Geneva, Switzerland; 2024. Available from: https://cdn.who.int/
- 15. WHO. Vaccines and immunization: Dengue [Internet]. World Health Organization. 2025 [cited 2025 May 8]. Available from: https://www.who.int/
- 16. WHO. Nepal kicks off dengue 'Search and Destroy' drive with over 100 trained youth volunteers [Internet]. World Heath Organization. 2025. Available from: https://www.who.int/nepal/
- 17. Republica. Govt declares Shrawan as dengue awareness month. Republica [Internet]. 2025 Jul 16; Available from: https://myrepublica.nagariknetwork.com/news/govt-declares-shrawan-as-dengue-awareness-month-14-91.html
- 18. Marcos-Marcos J, Olry de Labry-Lima A, Toro-Cardenas S, Lacasaña M, Degroote S, Ridde V, et al. Impact, economic evaluation, and sustainability of integrated vector management in urban settings to prevent vector-borne diseases: a scoping review. Infect Dis poverty [Internet]. 2018 Sep 3;7(1):83. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30173675
- 19. World Mosquito Program. World Mosquito Program's Wolbachia method dramatically reduces dengue incidence in randomised controlled trial in Yogyakarta, Indonesia [Internet]. 2025 [cited 2025 May 8]. Available from: https://www.worldmosquitoprogram.org/en/news-stories/media-releases/world-mosquito-programs-wolbachia-method-dramatically-reduces-dengue#:~:text=The World Mosquito Program ,Indonesia%2C compared to untreated areas
- 20. Ouédraogo S, Benmarhnia T, Bonnet E, Somé PA, Barro AS, Kafando Y, et al. Evaluation of Effectiveness of a Community-Based Intervention for Control of Dengue Virus Vector, Ouagadougou, Burkina Faso. Emerg Infect Dis [Internet]. 2018 Oct;24(10):1859–67. Available from: http://wwwnc.cdc.gov/eid/article/24/10/18-0069 article.htm
- 21. WHO. Early Warning, Alert and Response System [Internet]. Word Health Organization. 2025. Available from: https://www.who.int/emergencies/surveillance/early-warning-alert-and-response-system-ewars
- 22. Afifi RA, Parker EA, Dino G, Hall DM, Ulin B. Reimagining Rural: Shifting Paradigms About Health and Well-Being in the Rural United States. Annu Rev Public Health [Internet]. 2022 Apr 5;43:135–54. Available from: http://www.ncbi.nlm.nih.gov/pubmed/34910581
- 23. Hussain-Alkhateeb L, Kroeger A, Olliaro P, Rocklöv J, Sewe MO, Tejeda G, et al. Early warning and response system (EWARS) for dengue outbreaks: Recent advancements towards widespread applications in critical settings. Shaman J, editor. PLoS One [Internet]. 2018 May 4;13(5):e0196811. Available from: https://dx.plos.org/10.1371/journal. pone.0196811
- 24. Bhandari D. Challenges and opportunities in Nepal's early warning communication. Int J Disaster Risk Reduct [Internet]. 2025 Mar;119:105318. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2212420925001426
- 25. Alonso S, Chaccour CJ, Wagman J, Candrinho B, Muthoni R, Saifodine A, et al. Cost and cost-effectiveness of indoor residual spraying with pirimiphos-methyl in a high malaria transmission district of Mozambique with high access to standard insecticide-treated nets. Malar J [Internet]. 2021 Mar 10;20(1):143. Available from: http://www.ncbi.nlm.nih.gov/pubmed/33691706
- 26. Thommes E, Coudeville L, Muhammad R, Martin M, Nelson CB, Chit A. Public health impact and cost-effectiveness of implementing a 'pre-vaccination screening' strategy with the dengue vaccine in Puerto Rico.' Vaccine [Internet]. 2022 Nov;40(50):7343–51. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0264410X22013433

- 27. Vaughan K, Kok MC, Witter S, Dieleman M. Costs and cost-effectiveness of community health workers: evidence from a literature review. Hum Resour Health [Internet]. 2015 Dec 1;13(1):71. Available from: http://human-resources-health.biomedcentral.com/articles/10.1186/s12960-015-0070-y
- 28. MoHP. Nepal Malaria Strategic Plan (2014-2025) [Internet]. Ramshahpath, Kathmandu Nepal: Ministry of Health and Population, Department of Health Services; 2014. Available from: https://mesamalaria.org/wp-content/uploads/2024/07/Nepal-malaria-strategic-plan-2014-2025.pdf
- 29. CARPHA. Community Engagement and Vector Control in the Caribbean: a manual for governments to engage, empower and activate citizens in the fight against mosquitoes that spread diseases. 2017.
- 30. Marcos-Marcos J, Olry de Labry-Lima A, Toro-Cardenas S, Lacasaña M, Degroote S, Ridde V, et al. Impact, economic evaluation, and sustainability of integrated vector management in urban settings to prevent vector-borne diseases: a scoping review. Infect Dis Poverty [Internet]. 2018 Dec 3;7(1):83. Available from: https://idpjournal.biomedcentral.com/articles/10.1186/s40249-018-0464-x
- 31. Samsudin NA, Othman H, Siau CS, Zaini Z 'Izzat I. Exploring community needs in combating aedes mosquitoes and dengue fever: a study with urban community in the recurrent hotspot area. BMC Public Health [Internet]. 2024 Jun 20;24(1):1651. Available from: https://bmcpublichealth.biomedcentral.com/articles/10.1186/s12889-024-18965-1
- 32. EDCD. Nepal Malaria Strategic Plan (2014-2025) [Internet]. Teku, kathmandu, Nepal: Ministry of Health and Population, Department of Health Services; 2014. Available from: https://km.mohp.gov.np/sites/default/files/2018-07/Nepal malaria strategic plan %282014-2025%29.pdf

Recommended citation: NHRC. 2025. Stopping Dengue in its Tracks: Prevention and Control in Nepal (Policy brief). Kathmandu. Nepal Health Research Council.

Prepared by:

Supported by:

Nepal Health Research Council (NHRC)

Institute of Tropical Medicine (ITM), Belgium