Impact of live and cloud based Tele-Ophthalmology
System on Referral Patterns and Disease Identification
at Community Eye Centers in Nepal

PROF. DR. RABA THAPA MD, PHD

CHIEF: RESEARCH DEPARTMENT, HEAD: VITREO-RETINA DEPARTMENT, TILGANGA INSTITUTE OF OPHTHALMOLOGY, NEPAL

11TH NATIONAL SUMMIT OF HEALTH AND POPULATION SCIENTISTS IN NEPAL, 10 TO 12 APRIL 2025, KATHMANDU,

NEPAL

Financial Disclosure: Nil

INVESTIGATORS

PI: Dr. Raba Thapa MD, PhD

Tilganga Institute of Ophthalmology, Kathmandu, Nepal

Co-investigators

1Sean Collon MD

1Eric Hansen MD

2Geoffrey Tabin MD

1University of Utah Moran Eye Center, USA

2Byer Eye Institute, Stanford University, USA

Outline of presentation

Background

Methods

Result

Conclusion

Take away

Acknowledgement

Background: Telemedicine

Use of electronic information and communications technologies

Provide and support health care when distance separates the participants

Telemedicine versus Telehealth

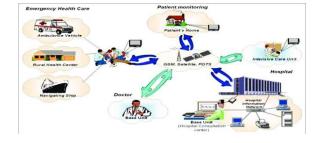
TELEMEDICINE

Remote clinical services

TELEHEALTH

Non-clinical services: training, administrative meetings, and continuing medical education

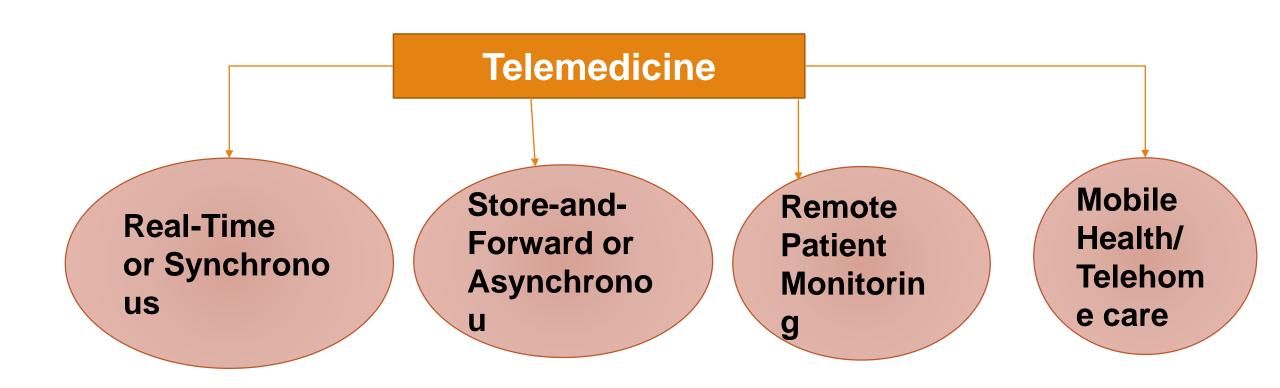
Background: Telemedicine


Support remote clinical services: diagnosis and monitoring of disease

Important to bridge the gap in situations:

rural settings

lack of transport


lack of mobility

conditions due to outbreaks, epidemics or pandemics decreased funding, or a lack of staff restrict access to care.

Types of Telemedicine

- Tele-ophthalmology involves the acquisition and transfer of patient data either in real-time or through cloud-based systems, to provide high-level eye care
- for patients in areas with limited access to eye care services
- The use of tele-ophthalmology service is rapidly increasing over the recent years.

- Advancement of fundus cameras having facilities of both anterior and posterior segment photograph
- Development of newer technology like Artificial intelligence and internet connectivity has increased its wider use

>Although some success, there are some challenges.

Poor anterior segment imaging capabilities for real-time consultations.

- ➤ Difficulties with coordinating residents/fellows and consultant schedules with patient appointments.
- >Unnecessary and costly referrals for poor patients with travel costs

Aim of the study:

To assess the impact of combined live and cloud-based tele-

ophthalmology system on referral patterns and disease identification at

community eye centers in Nepal located in remote areas.

This is a cross-sectional study.

Study period: 2024

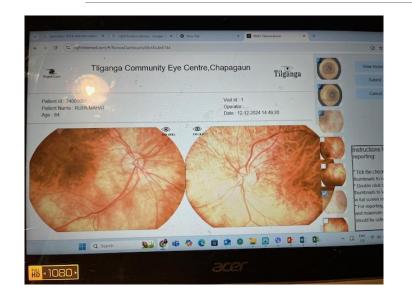
Ethical approval: Nepal Health Research Council

Study site: Two community eye centres (Dhading and Nuwakot) of Nepal located remotely from the tertiary base hospital

Sample size: 600 (300 each site)

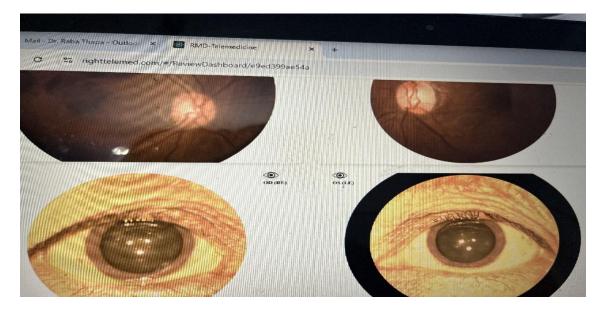
Inclusion criteria

- Patients at the 19 years and above with
- ►BCVA 6/18 or worse
- ➤ New or longstanding visual field deficit the study
- >Type 1 or Type 2 diabetes
- >systemic hypertension
- All patients 60 years of age or older visiting CECs


Exclusion criteria

Patient not willing to participate in

- Detailed history
- Detailed eye examination by allied ophthalmic personnel (OA)
- ➤ Anterior and posterior segment photo by OA using fundus camera (Right medical Pvt Ltd)
- Live consultation with VR fellows
- Cloud based grading by the vitreo-retina specialist (gold standard)



Result

Total study participants: 600

The mean age:62.3 years with SD 13.0

Male: 220 (36.75)

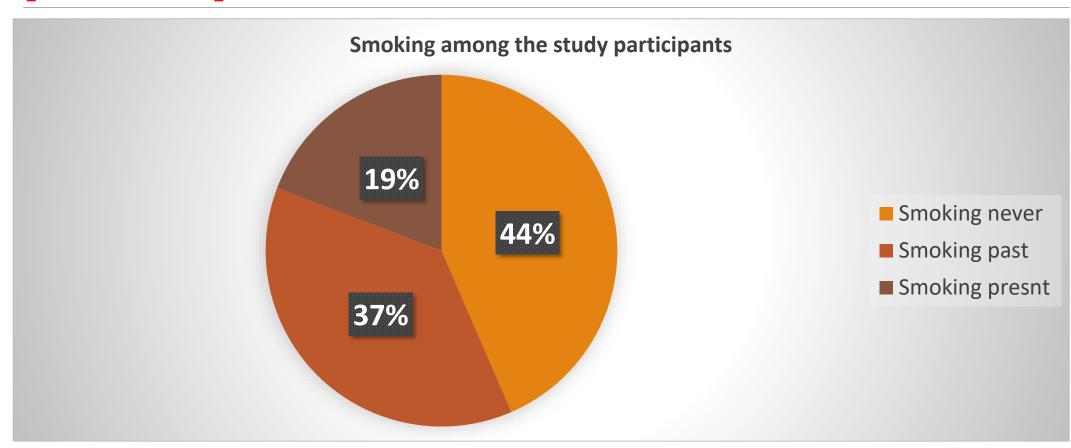
Female: 380 (63.3%)

Result: age distribution

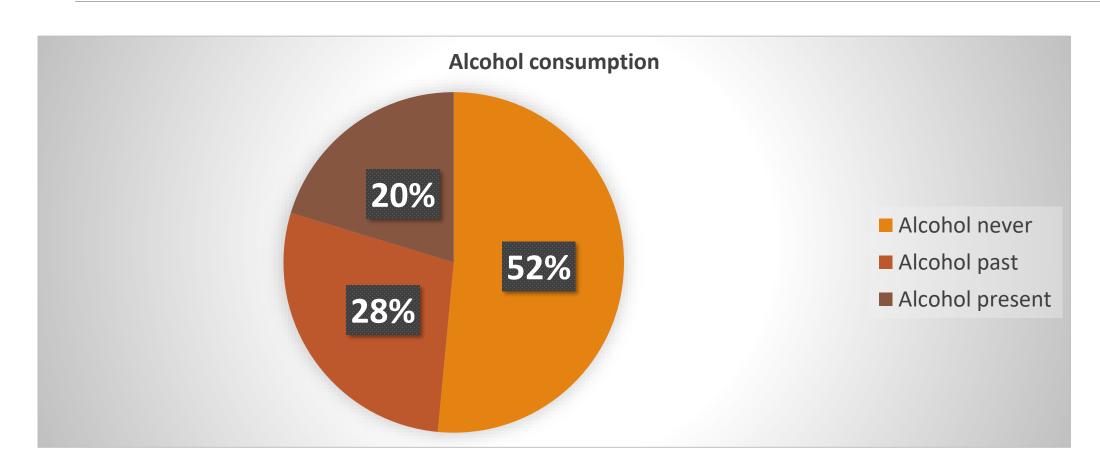
Age group	Total	
	Frequency	Percentage
<30 years	7	1.2
31-40 years	36	6.0
41-50 years	74	12.3
51-60 years	117	19.5
61-70 years	205	34.2
71-80 years	129	21.5
≥81 years	32	5.3
Total	600	100.0

Results: demographic characteristics

Occupation:


Agriculture 22.8%

Household/housewife comprised of 21.3%.


Literacy:

Illiterate: 50.8%

Smoking among the study participants

Alcohol use among the study participants

Systemic diseases among the study participants

Systemic diseases	Total	
	Frequency	Percentage
Diabetes mellitus	179	29.8
Hypertension	329	54.8
Hyperlipidaemia	37	6.2
Cardiac disease other	3	0.5
than HTN		
Thyroid disorder	8	1.3
Asthma	10	1.7
Neurological disorders	3	0.5
Others	9	1.8

Uncorrected visual acuity among the study participants

	Total	
Uncorrected VA	Frequency	Percentage
6/6-6/12	248	41.33
6/12-6/18	175	29.16
6/18- 6/60	142	23.66
6/60 – 3/60	17	2.8
3/60 - PL	18	3
Total	600	100.0

Best corrected visual acuity among the study participants

	Total	
Best corrected visual	Frequency	Percentage
acuity		
6/6-6/12	441	73.5
6/12-6/18	101	16.8
6/18- 6/60	46	7.66
6/60 – 3/60	1	0.16
3/60 - PL	11	1.8
Total	600	100.0

Refractive Error among participants

	То	tal
Refractive Error	Frequency	Percentage
Refractive error (RE)	124	20.7
Refractive error (LE)	122	20.4
Presbyopia	430	71.8

Anterior segment diseases RE	To	tal
	Frequency	Percentage
Cataract	199	33.2
Conjunctival disease	4	.7
Corneal disease	2	.3
Pterygium/ pingcula	10	1.7
NLD obstruction	2	.3
Nystagmus	1	0.16
Pco	8	1.3
Trichiasis	2	0.3
Post synaechiae	1	0.16

Anterior segment diseases LE	Total	
	Frequency	Percentage
Cataract	211	35.2
Cunjuntival disease	3	.5
Pterygium/ pingcula	6	1.0
NLD obstruction	1	.16
Nystagmus	1	.16
PCO	8	1.33
<mark>Trichiasis</mark>	2	0.3
Post synaechiae	1	0.16

Posterior segment	Total	
diseases RE		
	Frequency	Percentage
Diabetic retinopathy	53	8.83 (29% among DM)
HTN Retinopathy	80	13.3 (24% among HTN)
Macular hole	2	.3
ARMD	112	18.7
BRVO	9	1.5
CRVO	4	.7
Epiretinal membrane	4	.7
RPE changes	22	3.7
Glaucoma suspected	29	4.8

Posterior segment	Total	
diseases RE		
	Frequency	Percentage
Tractional RD	1	.2
Rhegmatogenous RD	2	.3
Optic atrophy	12	2.0
Vitreous hemorrhage	5	.8
Retinitis pigmentosa	3	.3
Others	7	1.16
Chorioretinal scar	4	.6

Posterior segment	Total	
diseases LE		
	Frequency	Percentage
Diabetic retinopathy	55	9.16 (30 among DM)
HTN Retinopathy	84	14.0 (25.5 among HTN)
Macular hole	3	.5
ARMD	115	19.2
Mild ARMD	54	47.0
Intermediate ARMD	36	31.3
Wet ARMD	3	2.6
Geographic atrophy	8	7.0
Macular scar	14	12.2

Posterior segment diseases LE	To	otal
	Frequency	Percentage
BRVO	7	1.2
CRVO	5	.8
Epiretinal membrane	7	1.2
RPE changes	26	4.3
Glaucoma suspected/ Glaucoma	30	5.0
Tractional RD	3	.5
RRD	2	.3

Diabetic retinopathy

Diabetic retinopathy	Total	
	Frequency	Percentage
NPDR	52	74.3%
PDR	18	25.7%
Total	70	100.0%
Mild	29	55.8%
Moderate	15	28.8%
Severe	8	15.4%
Total	52	100.0%

Hypertensive retinopathy

Hypertensive retinopathy	Total	
	Frequency	Percentage
grade 1	235	88.7%
grade 2	23	8.7%
grade 3	7	2.6%
Total	265	100.0%

AMD

AMD	Total		
	Frequency	Percentage	
MILD dry AMD	308	75.7	
Immediate dry AMD	65	16.0	
Wet AMD	28	6.9	
geographical atrophy	6	1.5	
Total	407	100.0%	

Referral patients and treatment at tertiary eye hospital

Referral	Total	
	Frequency	Percentage
Live	171	28.5
Cloud	191	31.8
Common referrals	150	25
Referral patient visited to tertiary hospital	91	47.6
Self referral	17	8.9

Conclusion

➤ Tele-ophthalmology service is effective modality of eye care service in remote areas for:

detection of both anterior and posterior segment diseases

timely referral for prompt treatment

Reduction of blindness

Cost effective for the patients

Conclusion

As part of a continual quality improvement process, findings from this study will:

- help to make further adjustments and refinements in tele-ophthalmology system.
- Scaling up the modality
- > Further integration of AI model in grading

Takeaway...

- Tele-ophthalmology service is effective modality of eye care service in remote areas for quality eye care
- >Scaling of the service in remote and rural areas will support for reducing

the blindness.

Acknowledgement

- ➤ Moran Eye Center, University of Utah, USA
- ➤ Tilganga Institute of Ophthalmology (TIO)
- ➤ Nuwakot CEC/ Dhading CEC

VR Fellows TIO:

- ➤Dr. Gunjan Prasai
- ➤ Dr. Nim Lhamu Sherpa
- > Dr. Bikram Shrestha
- ➤ Dr. David Chanthan

Retina faculties, TIO

References

- Thapa, R., et al. Prevalence, Pattern and Risk Factors of Retinal Diseases Among an Elderly Population in Nepal: The Bhaktapur Retina Study. <u>Clin Ophthalmol</u> 2020;14: 2109-2118.
- Collon, S., et al. Utility and Feasibility of Teleophthalmology Using a Smartphone-Based Ophthalmic Camera in Screening Camps in Nepal. <u>Asia Pac J Ophthalmol (Phila)</u> 2020;9(1): 54-58.
- 3. Hong, K., et al. Teleophthalmology through handheld mobile devices: a pilot study in rural Nepal. J Mob Technol Med 2019; 8(1).

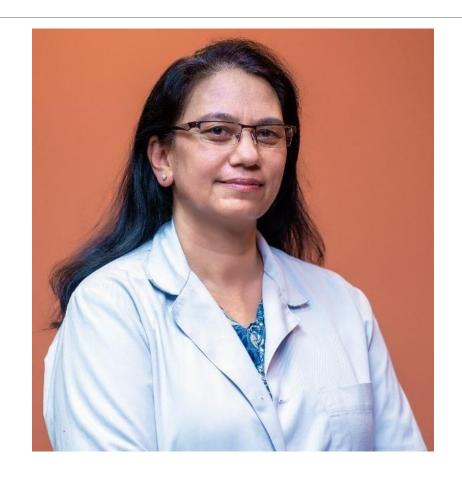
References

- 4.Bhattarai, M. D., et al. Fundus Photography as the Base of Three-Tier Diabetic Retinopathy Care System to Its Wider Roles: Learning from a Case Experience. J Nepal Med Assoc 2021; 59(233): 100-107.
- 5.Prathiba, V. and M. Rema. "Teleophthalmology: a model for eye care delivery in rural and underserved areas of India." Int J Family Med 2011: 683267.
- 6.Blomdahl, S., et al. Tele-ophthalmology for the treatment in primary care of disorders in the anterior part of the eye. <u>J Telemed Telecare</u> 7 Suppl 2001;1: 25-26.

Thank you

Biography

Dr. Raba Thapa MD, PhD


Professor of Ophthalmology (National Academy of Medical Sciences; NAMS)

Senior consultant ophthalmologist and vitreo-retinal surgeon

Head: vitreo-retina department and

Chief: Research department

Tilganga Institute of Ophthalmology (TIO), Kathmandu, Nepal.

